
INTRODUCING A NEW XML-BASED PROTOCOL FOR SIP USER-AGENT

SERVICES COLLABORATION: INTEGRATION WITH IP-PHONE AND PC

Wajdi Elleuch
Université de Sherbrooke

Wajdi.Elleuch@USherbrooke.ca

Alain C. Houle
Université de Sherbrooke

Alain.Houle@USherbrooke.ca

Samuel Guénette
M5T

sam@m5t.com

Abstract

Some IP-phones are offering only a simple user interface
with plain DTMF digits and optional function buttons, but
without any graphical display. This kind of limited user
interface makes cumbersome the usage of advanced IP-
telephony services in many scenarios. Enhancing IP-telephony
services with collaborative devices can both resolve the
capabilities limitations of IP-phones and also encourage user
location mobility. The introduced solution consists of using a
third party device, such as a PC on an IP network, to make a
connection with the IP-phone where the connection is realised
with a specific protocol based on the Session Initiation
Protocol (SIP); this protocol benefits from the Subscribe/Notify
mechanism defined by the IETF. By exchanging Notify requests
and by using suitable information encoding, the two devices
are able to collaborate and can evolve together to carry out
advanced IP-telephony services. On the scope of this work,
some collaborative services such as the caller-id service were
analysed, developed and implemented.

Keywords: IP-Telephony, SIP, XML-based protocol,
Subscribe/Notify mechanism, SIP user agent services, service
collaboration.

1. Introduction

The take-up of voice over IP (VoIP) and convergence of voice
and data networks has brought new opportunities in both mass-
market and business communications. The procurement of this
new technology is often made on the promise of cost savings:
e.g. the management (including human resources) of a single
network infrastructure against two separate networks and ‘free’
telephone calls. Indeed, as competition in the telephony
industry grows from both traditional and new (IP) providers, it
is imperative to provide clear technological leadership and
product differentiation — particularly in the corporate market.

The current cost of IP-phone devices is often seen as one of the
major issues for any company considering the deployment of
IP telephony. Actually, a great number of IP-phones are
available on the market where some of them are well equipped
with advanced hardware and software capabilities (large LCD,
hands-free, camera, etc.). The cost of these machines remains

relatively expensive with the effect of slowing down their
expansion for the mass-market.
To offer less expensive equipment to the mass-market, many
manufacturers introduced basic IP-phone with limited
hardware/software capabilities. Unfortunately, this type of
devices causes a limitation for both the improvement of the
actual IP telephony services and for the development of new
ones. As a basic example, consider a user who wishes to see
the identification of the caller before answering the incoming
call with an IP-phone that has no display capability.
A solution to this limitation is possible by “connecting” this
basic IP-phone to a PC: it becomes now possible to display the
caller’s identification information. As a logical improvement of
this service, it will be possible to create a full collaboration
between a PC and an IP-phone to handle the incoming calls.
This collaboration includes the ability to answer the call using
either the IP-phone or the PC and to notify each device about
the sequence of events.
To realize full collaboration of devices’ services, a new
protocol has to be designed to insure proper information
exchange between two to many devices: e.g. an IP-phone and a
PC. In the present case, the PC can be considered as third party
device extension of the IP-phone that offers new possibilities
for the development of services that rely on graphical user
interfaces. All the PC capabilities can then be used to offer
various collaborative IP-telephony services to the user.

This article is composed of 3 main sections. In section 2, we
begin by presenting how collaboration can be initiated and by
justifying the principal technological choices. In section 3, we
present the principles under the protocol design and its
implementation. In section 4, we explore the caller-id service
in details. Finally, we conclude this article by suggesting some
future work.

2. Enabling collaboration

2.1. Initial use case

The system is composed of 3 entities: one generic SIP User-
Agent, one IP-Phone and one PC. The IP-phone plays the role
of a centric element that divides the system in two sides, as
shown on figure 1. On one side, the standard SIP protocol
ensures the establishment, modification and termination of IP-
telephony calls. On the other side, collaboration of the PC and

1-4244-0038-4 2006
IEEE CCECE/CCGEI, Ottawa, May 2006

144

the IP-phone is ensured by a collaboration protocol that
guarantees the exchange of asynchronous events notifications.
With this collaboration, the proposed system can offer various
services for provisioning UAs, exchanging call-history,
listening to the voice mailbox, etc. In addition, the execution of
a service on a UA can be requested by its “collaborator”: e.g.
the PC instructs the IP-phone to make a call and to play a ring
tone when the call is completed.

Figure 1: System overview

2.2. Communication model

The collaboration protocol must be session-oriented with the
ability to provide sequenced data delivery between peers. A
session is long-lived and persistent over protocol transaction
operations. This allows each peer to make changes to the
session state for the lifetime of the communication. As an
example, authentication information specific to a session
remains in effect until the session is terminated.
Many technologies can be used to implement this collaboration
protocol. Some distributed object technologies, such as
CORBA, JAVA/RMI or COM/DCOM, are mainly based on
the client/server communication model [1] [2]. In this model,
services are defined on the server side and the client can use
them by sending requests to the server. The client can’t be
automatically notified when change occurs on the server side.
This model inducts a “master-slave” relation between peers
that reduces the collaboration ability of the communication
model. Otherwise, the peer-to-peer model [3] can guarantee a
symmetric communication where all peers are equal i.e. peers
can both request and offer services. They act as both client and
server rather than having a role only as client or only as server.
This communication model is more adapted for collaboration
between user agent.

2.3. Exchanged data description

Some services supported by the collaboration protocol need
description of the data with deep hierarchical organisation. As
example, suppose that we would like to send the description of
a set of calls that includes received calls, placed calls and
missed calls. For each call category, we might need to include
a set of information about the called person identification, the
caller identification, the start time of the call, the stop time, etc.
When choosing to handle these data as objects, many methods
have to be introduced to manage each information hierarchical
level. This solution can cause complication and extra overhead
for developers. A simple solution is to keep data in its textual
state. Coding exchanged data in readable human format can
facilitate the debugging process.

XML is the lingua franca of interchange, providing a flexible
but fully specified encoding mechanism for hierarchical
content [4]. Therefore, XML can be a data coding solution
between the PC and the IP-phone.
Some remote procedure call (RPC) systems based on XML-
RPC [5] or SOAP-XML[6] coding format can be introduced to
support the coding data format between the PC and the IP-
phone. The limited set of the XML-RPC name-space and the
very exhaustive and expensive XML coding requirements of
SOAP opened up the opportunity to define our adapted XML
coding name-space.

2.4. Transport of data

There are at least two choices to convey data between the IP-
phone and the PC. While HTTP[7,8] is popular on Web client-
server communication architectures, introducing it on the peer-
to-peer communication world can cause some complexity for
session management and to give each peer the privilege to
provide both request and response abilities [9]. On the other
hand, the UA located inside an IP-phone is already enable with
the SIP protocol and then offers a SIP software component.
Therefore, selecting SIP as the base of the collaboration
protocol is natural and represents an easily supported solution
which is possible because of the flexibility that SIP offers
through its different extensions mechanisms.

3. Designing the UAs Collaboration Protocol

3.1. Protocol session establishment

Our goal is to provide a SIP-specific framework for event
notification that is simple and efficient for simple features
while being flexible enough to provide powerful services. The
creation of SIP sessions can be fulfilled by both INVITE[10] or
SUBSCRIBE[11] methods. Some SIP methods such as INFO
[12], OPTION[10], MESSAGE[13] or NOTIFY[11] can be
used within the established SIP session to convey textual
information between peers.

Recent IETF RFCs show that there is a strong complementarily
between the SUBSCRIBE and NOTIFY SIP methods. The
SUBSCRIBE/NOTIFY mechanism, initially introduced by
IETF RFC 3265 (SIP – Specific Event Notification), provides
an extensible framework by which SIP nodes can request
notification from remote nodes indicating that given events
have occurred [11]. Used in the presence [14] and Instant
Messaging systems, the SUBSCRIBE/NOTIFY mechanism
can be generalised to other communication systems that require
state events synchronisation. The SUBSCRIBE message
establishes a "dialog" with the service agent. A dialog is
defined in RFC 3261 [10] and it represents the SIP state
between a pair of entities to facilitate peer-to-peer message
exchanges. Described in RFC 3265 [11], the NOTIFY message
contains bodies (payload) that describe operation related to the
subscribed service.

145

The subscription state can be controlled by introducing the
watcher information event template-package for SIP [15,16].
The subscriber can then receive notification about its
subscription state (pending, active, waiting, terminated, etc.).
The watcher information can be applied on every event
package that requires subscription. By following the same
principle, it is possible to create a new template-package to
report call state for each package that includes call state
information. The finite state machine (FSM) framework
included in a SIP user agent can then be reported and shared
between multiple SIP user agents.

Our system uses separate event package names for different
services. The SUBSCRIBE/NOTIFY mechanism is used to
ensure the session management between peers and the
notifications operations exchange within a service oriented
context.

3.2. Protocol layers

Four layers defined the proposed protocol as shown on figure
2: The session layer that provides a communication path
between peers using the SUBSCRIBE/NOTIFY mechanism;
the event package layer that specifies the concerned service;
the operation layer that specifies the event that can be either a
request or a response; the parameters layer that contains the
specified data for each event.

Figure 2: UAs Collaboration Protocol layers

3.3. Protocol messaging mechanism

Before using a service, the user agent (IP-phone or PC) has to
subscribe to the event package that corresponds to the intended
service. If the subscription is accepted, the user agent will be
authorized to receive notifications about subscribed event
package state changes. Figure 3 shows an example of the
needed message exchange for the execution of the caller-id
service.

Figure 3: Example of sequence diagram for caller-id service

3.4. Implementation overview

Based on the SIP stack, the SIP user agent (PC or IP-phone)
can be mounted by integrating some components to implement
the user interface : the SIP stack offers mainly the methods to
handle SIP packets; the SIP engine manages sessions, plays the
middleware function between logical running applications and
SIP stack by translating SIP messages to application messages
and vice versa; the logical running application maintains the
SIP machine state, gets user action events from user interface
component, sends user events to the SIP engine, manages the
user interface and refreshes it when receiving new application
events.

The implementation of the proposed protocol requires an
additional component. Since event handling policy is defined
and managed on the logical running application component, we
introduced a new engine beneath this component layer.
Therefore, on the same level as the SIP engine a new engine
named “Collaboration SIP-based engine” is added for handling
the collaboration protocol. These two engines use different
instantiations of the SIP Stack objects. Nevertheless, they
communicate simultaneously with almost the same
instantiations of the logical running application objects. Figure
4 shows an overview of the main implemented components
and their interactions.

146

Figure 4: Overview of the main implemented components

4. Example of service

The caller-id service represents a good example of an IP-
telephony service executed in collaboration between two
devices. When receiving an INVITE, the IP-phone has to
notify subscribed users on the caller-id event package. The
NOTIFY payload message contains XML coding (see message
3 on figure 3). It includes the name of the event package, i.e.
caller-id, the name of the operation i.e. new-call and the
description of the received call:

<?xml version="1.0"?>
 <caller-id xmlns="..." version="..." state="...">

 <operation-name>new-call</operation-name>
 <call-description>
 <from>SIP_ua_uri</from>
 <to>IP-phone_uri</to>
 <call-id>Call-id </call-id>
 <cseq>CSeq</cseq>
 <contact>Contact</contact>
 </call-description>
 </caller-id>

5. Conclusion
The proposed protocol benefits from the existent technologies
i.e. SIP and XML. It is subdivided in layers to permit
flexibility and adaptability, making possible new advanced
collaborative services between UAs devices such as IP-phone
and PC. Additionally, enhancing existent services on the PC
side can favor user mobility. On the other hand, the increasing
popularity of new handheld devices, such as PDAs and IP-
enabled cellular phones (dual-mode), can let us think about
deployment of the protocol to various third party devices, other
than just PCs.

References
[1] D. Box. Essential COM. Addison-Wesley Publishing

Company, 1998.

[2] W. Emmerich. Engineering Distributed Objects. John
Wiley & Sons, Apr. 2000.

[3] M. Gupta, P. Judge, M. Ammar, “A reputation system for
peer-to-peer networks,” International Workshop on
Network and Operating System Support for Digital Audio
and Video, pp. 144-152, 2004.

[4] R. Enns, Ed., “NETCONF Configuration protocol”, draft-
ietf-netconf-prot-11, February 2006.

[5] Mark Allman, “AN EVALUATION OF XML-RPC,” ACM
SIGMETRICS Performance Evaluation Review, vol. 30,
pp. 2-11, March, 2003

[6] World Wide Web Consortium, “Simple object access
protocol (soap) 1.1“ URL : http://www.w3.org/TR/SOAP/.

[7] T. Berners-Lee, R. Fielding, and H. Nielsen. Hypertext
Transfer Protocol - HTTP/1.0, May 1996. RFC 1945.

[8] R. Fielding, J. Gettys, J. C. Mogul, H. Frystyk, and T.
Berners-Lee. Hypertext Transfer Protocol - HTTP/1.1,
Jan. 1997. RFC 2068.

[9] S. Berger, H. Schulzrinne, S. Sidiroglou, X. Wu
“Ubiquitous Computing Using SIP,” International
Workshop on Network and Operating System Support for
Digital Audio and Video, pp 82-89, 2003

[10] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
A., Peterson, J., Sparks, R., Handley, M., and E. Schooler,
"SIP: Session Initiation Protocol", RFC 3261, June 2002.

[11] Roach, A.B., "Session Initiation Protocol (SIP)-Specific
Event Notification", RFC 3265, June 2002.

[12] S. Donovan, “The SIP INFO Method”, RFC 2976,
October 2000.

[13] RFC 3426 - Session Initiation Protocol (SIP) Extension
for Instant Messaging ftp://ftp.rfc-editor.org/in-
notes/rfc3428.txt

[14] Rosenberg, J., "A Presence Event Package for the Session
Initiation Protocol (SIP)", RFC 3856, July 2004.

[15] Rosenberg, J., "A Watcher Information Event Template-
Package for the Session Initiation Protocol (SIP)", RFC
3857, August 2004.

[16] Rosenberg, J., "An Extensible Markup Language (XML)
Based Format for Watcher Information", RFC 3858,
August 2004.

147

