
1 Overview

The choreography has been introduced as a new view on the services interaction.
It’s a description of abstract protocols [6]. It offers a collaborative decentral-
ized coordination. Choreography, which is descriptive in nature, describes the
interaction contract between two or more web services. It helps to describe the
services behavior in the composition.
Choreography languages reflect the long-term interactions. They allow the user
to describe the peer-to-peer collaboration between services by defining their
common observable behavior. In the realm of choreography, two different mod-
eling approaches differ:

Interconnection models based approach The control flow is defined by
participant. The behavior of each participant and the exchanged messages are
represented. However, the models could be incompatible.

• BPMN (Business Process Modeling Notation) [7] it’s a platform indepen-
dent language. It uses a typical notation for every process. To make
interconnecting different processes, this language uses messages flows. In
that way, all interactions are listed with the definition of the control flow
between them. Hence, communications are established using data objects
and communicating activities. Nevertheless, BPMN doesn’t support mul-
tiple instances of participant. So, to solve this problem, it uses a Pool
set to represent multiple participants in one conversation and uses PBD
(Participant Behavior Description) as views from the individual partners.

• BPEL4Chor [4] It’s a BPEL extension and based on "Abstract Process
Profile for observable Behavior". BPEL4Chor uses abstract processes and
supports all the different choreographies design phases. It ensures com-
munication between participants using message links.

1

Interaction models based approach The elementary interactions, namely
demand and the exchange of request-response messages, are the basic elements
of this approach. Behavioral dependencies, shown in these interactions and
combinations of interactions, are grouped in complex interactions. According
to this type, we can list WS-CDL and Let’s Dance:

• Let’s Dance [8] Its specification is based on graph. It’s also based on
independent visual notation. The communication action is performed by
an actor playing a role. The exchanged messages are message sending and
message receipt action.

• WS-CDL: its specification is based on an XML document [3]. It defines a
common behavior for all participants and models a message between two
(or more) participants. It provides more detailed models.

Each of these languages has brought new concepts, and redefined ones already
known by others. This created a multitude of concepts, sometimes overlapping
and a multitude of ways to manipulate. Unlike BPEL, BPEL4Chor, WS-CDL
provides a description of the collaboration between the partners involved inde-
pendently in the process.

2 WS-CDL constructors

WS-CDL is used to describe the common and collaborative observable behavior
of multiple services which interact to achieve a goal [1]. It is a language rely-
ing on layers with different levels of expressibility to describe a choreography.
However, it is not necessary to use all the features of WS-CDL to provide cor-
rect choreography specification [2]. WS-CDL is composed of two parts[5] one
describing static relationships which are invariant to characterize data types,
types of communication channels, types of communication partners, etc...The
second part describes the dynamic behavior: interactions between communica-
tion partners (web service) and their temporal dependencies.

2.1 Static Part

The static part defines the entities that collaborate in a WS-CDL specification.
They are defined as follows:

2.1.1 RoleType

<RoleType> defines the observable behavior of a participant services. It spec-
ifies the implementation process given by a participant with a specific role.

2

Listing 1: RoleType General Structure
< roleType name="ncname" >

<description type=" documentation " </description> ?
<behavior name="ncname" interface="qname" ? /> +

</roleType>

2.1.2 ParticipantType

<ParticipantType> represents an entity playing a particular set of roles in the
choreography and logically regroups observable behaviors of roles

Listing 2: ParticipantType General Structure
<participantType name="NCName">

<roleType typeRef="QName" /> +
</participantType>

2.1.3 RelationshipType

Once we have defined roles, we can define relationships. In WS-CDL, a relation-
ship declares its intention to interact between two roles. So <relationshipType>
identifies RoleType and behaviors.

Listing 3: RelationshipType General Structure
< relationshipType name="ncname">

<role type="qname" behavior="list of ncname" ? />
<role type="qname" behavior="list of ncname" ? />

</relationshipType>

2.1.4 ChannelType

After defining the roles and token, the channel will be defined. The <channelType>
is the main mechanism used to achieve interaction. ChannelType makes a point
of collaboration between participantType specifying where and how information
is exchanged.

Listing 4: ChannelType General Structure
<channelType

name="ncname"

usage="once " | "unlimited " ?
action="request -respond" | "request" | "respond" ? >
<passing

channel="qname"

action="request -respond" | "request" | "respond" ?
new="true " | "false"? /> ∗

<role type="qname" behavior="ncname" ? />
<reference>

<token name="qname"/>

3

</reference>
<identity>

<token name="qname"/> +
</identity> ?

</channelType>

2.2 Dynamic Part

<Choreography> carries a set of relationships (interactions between the types
of roles) and contains a definition of all variables used to perform the behavior
according to the data of the choreography.

Listing 5: Choreography General Structure
<choreography

name="NCName"

complete="xsd:boolean XPath -expression " ?
isolation="true" | "false" ?
root="true " | "false" ?
coordination="true" | "false"? >
<relationship type="QName" /> +
variableDefinitions ?
Choreography−Notation ∗

Activity−Notation

<exceptionBlock name="NCName">
WorkUnit−Notation+
</exceptionBlock> ?
<finalizerBlock name="NCName">
Activity−Notation

</finalizerBlock> ∗

</choreography>

Activities are low-level components of the choreography and used to describe
the actual work performed. The activity-notation is used to define these activ-
ities

2.2.1 Basic Activity

The main basic activities are <interaction> and <assign>:

• <interaction> : is the basic building block of a choreography, which trans-
lates the exchanged information between the collaborating parties and
possibly the synchronization of their observable information and values
âĂŃâĂŃof the exchanged information changes. It is defined by:

– channelVariable

– participate with relationshipType, fromRoleTypeRef and toRoleType-
Ref

– exchange which contains name, informationType/channelType and
action

4

Listing 6: Interaction General Structure
<interaction

name="NCName"

channelVariable="QName"
operation="NCName"

align="true" | "false" ?
initiate="true" | "false" ? >
<participate

relationshipType="QName"

fromRoleTypeRef="QName" toRoleTypeRef="QName" />
<exchange

name="NCName"

faultName="QName" ?
informationType="QName" ? | channelType="QName" ?
action="request" | "respond" >
<send

variable="XPath -expression " ?
recordReference="list of NCName" ?
causeException="QName" ? />

<receive

variable="XPath -expression " ?
recordReference="list of NCName" ?
causeException="QName" ? />

</exchange> ∗

</interaction>

• <assign> : is an activity used to create or change, and then make it
available in a role, the value of one or more variables. It can be, also, used
to cause an exception to a role.

Listing 7: Assign General Structure
<assign roleType="qname">

<copy name="ncname"

causeException="true" | "false"? >
<source variable="XPath -expression "? |

expression="Xpath -expression "? />
<target variable="XPath -expression " />

</copy>+
</assign>

2.2.2 Structural Activity

It refers to activities that specify scheduling rules in the choreography. At this
level, we distinguish:

• <sequence> : contains one or more Activity-Notation. When the sequence
activity is activated, the block of the elements are sequentially activated
in the same order as their definitions.

5

• <parallel> :the control structure, parallel, contains one or several Activity-
Notation. The parallel activity completes successfully when all the activ-
ities involved carry out work work successfully.

• <choice> : the choice control structure specifies the activity to be per-
formed.

2.2.3 WorkUnit-Notation

<workunit> may prescribe the constraints which must be satisfied to achieve
progress and thus perform the actual work in a choreography. It may also pre-
scribe the constraints which preserve the consistency of collaborations commonly
performed between the parties. Using workunit, an application can retrieve the
errors that are the result of abnormal actions and can also finalize choreography

Listing 8: Workunit General Structure
<workunit name="ncname"

guard="xsd:boolean XPath -expression "?
repeat="xsd:boolean XPath -expression "?
block="true|false"? >
Activity−Notation

</workunit>

6

WS-CDL Sample

<?xml version="1.0" encoding="UTF -8" ?>
<package name="BuyerSellerCDL " author="Steve Ross-Talbot"

version="1.0"

xmlns : bs="http ://www.pi4tech.com/cdl/BuyerSellerExample -1" >
<description type="description ">This is the basic ←֓

BuyerSeller Choreography Description</description>
<informationType name="BooleanType " type="xs:boolean" />
<informationType name="StringType " type="xsd:string" />
<informationType name="RequestForQuoteType" type="bs:←֓

RequestForQuote ">
<description type="documentation "> Request for quote message←֓

</description>
</informationType>
<informationType name="QuoteType " type="bs:Quote">
<description type="documentation "> Quote message </←֓

description>
</informationType>
<informationType name="QuoteUpdateType " type="bs:QuoteUpdate ←֓

">
<description type="documentation "> Quote Update Message </←֓

description>
</informationType>
<informationType name="QuoteAcceptType " type="bs:QuoteAccept ←֓

">
<description type="documentation ">Quote Accept Message</←֓

description>
</informationType>
<informationType name="CreditCheckType "

type="bs:CreditCheckRequest ">
<description type="documentation "> Credit Check Message </←֓

description>
</informationType>
<informationType name="CreditAcceptType " type="bs:←֓

CreditAccept ">
<description type="documentation "> Credit Accept Message </←֓

description>
</informationType>
<informationType name="CreditRejectType " type="bs:←֓

CreditReject ">
<description type="documentation "> Credit Reject Message </←֓

description>
</informationType>
<informationType name="RequestDeliveryType" type="bs:←֓

RequestForDelivery ">
<description type="documentation "> Request Delivery Message ←֓

</description>
</informationType>

7

<informationType name="DeliveryDetailsType"

type="bs:DeliveryDetails ">
<description type="documentation "> Delivery Details Message ←֓

</description>
</informationType>
<token name="BuyerRef" informationType="StringType " />
<token name="SellerRef " informationType="StringType " />
<token name="CreditCheckRef " informationType="StringType " />
<token name="ShipperRef " informationType="StringType " />\\
<roleType name="BuyerRoleType ">
<description type="description "> The Behavior embodied by a ←֓

buyer </description>
<behavior name="BuyerBehavior " />
</roleType >\\
<roleType name="SellerRoleType ">
<description type="description "> The behavior embodied by a ←֓

seller </description>
<behavior name="SellerBehavior " />
</roleType >\\
<roleType name="CreditCheckerRoleType">
<description type="description "> The behavior embodied by a ←֓

credit checker service </description>
<behavior name="CreditCheckerBehavior" />
</roleType >\\
<roleType name="ShipperRoleType ">
<description type="description "> The behavior embodied by a ←֓

shipper service </description>\\
<behavior name="ShipperBehavior " />
</roleType >\\
<relationshipType name="BuyerSeller ">
<role type="BuyerRoleType " />
<role type="SellerRoleType " />
</relationshipType >\\
<relationshipType name="SellerCreditCheck ">
<role type="SellerRoleType " />
<role type=" CreditCheckerRoleType" />
</relationshipType >\\
<relationshipType name="SellerShipper ">
<role type="SellerRoleType " />
<role type="ShipperRoleType " />
</relationshipType>
<relationshipType name="ShipperBuyer ">
<role type="ShipperRoleType " />
<role type="BuyerRoleType " />
</relationshipType>
<channelType name="Buyer2SellerChannelType">
<passing channel="2BuyerChannelType " new="true">
<description type="description "> Pass channel to enable ←֓

shipper to talk to buyer </description>
</passing>

8

<role type="SellerRoleType " />
<reference>
<token name="SellerRef " />
</reference>
</channelType>
<channelType name="Seller2CreditCheckChannelType">
<role type=" CreditCheckerRoleType" />
<reference>
<token name="CreditCheckRef " />
</reference>
</channelType>
<channelType name="2BuyerChannelType " action="request">
<role type="BuyerRoleType " />
<reference>\\
<token name="BuyerRef" />
</reference>
</channelType>
<channelType name="Seller2ShipperChannelType">
<passing channel="2BuyerChannelType ">
<description type="description "> Pass channel through to ←֓

shipper </description>
</passing>
<role type="ShipperRoleType " />
<reference>
<token name="ShipperRef " />
</reference>
</channelType>
<choreography name="Main" root="true">
<description type="description "> Collaboration between buyer←֓

, seller , shipper , credit chk </description>
<relationship type="BuyerSeller " />
<relationship type="SellerCreditCheck " />
<relationship type="SellerShipper " />
<relationship type="ShipperBuyer " />
<sequence>
<interaction name="Buyer requests a Quote - this is the ←֓

initiator "\\
operation="requestForQuote " channelVariable="Buyer2SellerC "

initiate="true ">
<description type="description ">Request for Quote</←֓

description>
<participate relationshipType="BuyerSeller " fromRole="←֓

BuyerRoleType " toRole="SellerRoleType " />
<exchange name="request" informationType="←֓

RequestForQuoteType" action="request">
<description type="description ">Requesting Quote</←֓

description>
</exchange>
<exchange name="response" informationType="QuoteType "

action="respond">

9

<description type="description ">Quote returned</description>
</exchange>
</interaction>
<workunit name="Repeat until bartering has been completed "

repeat="barteringDone = false">
<choice>
<sequence>
<interaction name="Buyer accepts the quote and engages in ←֓

the act of buying"

operation="quoteAccept " channelVariable="Buyer2SellerC " >
<description type="description ">Quote Accept</description>
<participate relationshipType="BuyerSeller "

fromRole="BuyerRoleType " toRole="SellerRoleType " />
<exchange name="Accept Quote" informationType="←֓

QuoteAcceptType "

action="request">
</exchange>
</interaction>
<interaction name= "Buyer send channel to seller to enable ←֓

callback behavior "

operation="sendChannel " channelVariable="Buyer2SellerC ">
<description type="description "> Buyer sends channel to pass←֓

to shipper </description>
<participate relationshipType="BuyerSeller "

fromRole="BuyerRoleType " toRole="SellerRoleType " />
<exchange name="sendChannel " channelType="2BuyerChannelType "←֓

action="request">
<send variable="cdl:getVariable (’DeliveryDetailsC ’,’’,’’)" ←֓

/>
<receive variable="cdl:getVariable (’DeliveryDetailsC ’,’’,’’)←֓

" />
</exchange>
</interaction>
<assign roleType="BuyerRoleType ">
<copy name="copy">
<source expression="true" />
<target variable="cdl:getVariable (’barteringDone ’,’’,’’)" />
</copy>
</assign>
</sequence>
<sequence>
<interaction name="Buyer updates the Quote - in effect ←֓

requesting a new price"

operation="quoteUpdate " channelVariable="Buyer2SellerC ">
<description type="documentation ">Quot Update</description>
<participate relationshipType="BuyerSeller "

fromRole="BuyerRoleType " toRole="SellerRoleType " />
<exchange name="updateQuote "

informationType="QuoteUpdateType " action="request">
</exchange>

10

<exchange name="acceptUpdatedQuote "

informationType="QuoteAcceptType " action="respond">
<description type="documentation "> Accept Updated Quote </←֓

description>
</exchange>
</interaction>
</sequence>
</choice>
</workunit>
<interaction name="Seller check credit with CreditChecker "

operation="creditCheck " channelVariable="Seller2CreditChkC ">
<description type="description ">
Check the credit for this buyer with the credit check agency

</description>
<participate relationshipType="SellerCreditCheck "

fromRole="SellerRoleType " toRole="CreditCheckerRoleType" />
<exchange name="checkCredit " informationType="←֓

CreditCheckType " action="request">
</exchange>
</interaction>
<choice>
<interaction name="Credit Checker fails credit check"

operation="creditFailed " channelVariable="Seller2CreditChkC "←֓
>

<description type="description ">
Credit response from the credit checking agency

</description>
<participate relationshipType="SellerCreditCheck "

fromRole="SellerRoleType " toRole="CreditCheckerRoleType" />
<exchange name="creditCheckFails " informationType="←֓

CreditRejectType " action="respond">
</exchange>
</interaction>
<sequence>
<interaction name="Credit Checker passes credit"

operation="creditOk " channelVariable="Seller2CreditChkC ">
<description type="description ">
Credit response from the credit checking agency

</description>
<participate relationshipType="SellerCreditCheck " fromRole="←֓

BuyerRoleType "

toRole="CreditCheckerRoleType" />
<exchange name="creditCheckPasses "

informationType="CreditAcceptType " action="respond">
</exchange>
</interaction>
<interaction name="Seller requests delivery details"

operation="requestShipping " channelVariable="Seller2ShipperC ←֓

">

11

<description type="description "> Request delivery from the ←֓

shipper </description>
<participate relationshipType="SellerShipper "

fromRole="SellerRoleType " toRole="ShipperRoleType " />
<exchange name="sellerRequestsDelivery"

informationType="RequestDeliveryType" action="request">
</exchange>
<exchange name="sellerReturnsDelivery"

informationType="DeliveryDetailsType" action="respond">
</exchange>
</interaction>
<interaction name="Shipper forward channel to shipper"

operation="sendChannel " channelVariable="Seller2ShipperC ">
<description type="description "> Pass channel from buyer to ←֓

shipper </description>
<participate relationshipType="SellerShipper "

fromRole="SellerRoleType " toRole="ShipperRoleType " />
<exchange name="forwardChannel " channelType="2←֓

BuyerChannelType " action="request">
<send variable="cdl:getVariable (’DeliveryDetailsC ’,’’,’’)" ←֓

/>
<receive variable="cdl:getVariable (’DeliveryDetailsC ’,’’,’’)←֓

" />
</exchange>
</interaction>
<interaction name="Shipper sends delivery details to buyer"

operation="deliveryDetails " channelVariable="←֓

DeliveryDetailsC ">
<description type="description "> Pass back shipping details ←֓

to the buyer </description>
<participate relationshipType="ShipperBuyer "

fromRole="ShipperRoleType " toRole="BuyerRoleType " />
<exchange name="sendDeliveryDetails"

informationType="DeliveryDetailsType" action="request">
</exchange>

</interaction>
</sequence>
</choice>
</sequence>
</choreography>
</package>

References

[1] A. Barros, M. Dumas, and P. Oaks. A critical overview of the web services
choreography description language (ws-cdl). BPTrends, 2005.

[2] G. Decker, H. Overdick, and J. M. Zaha. On the suitability of ws-cdl for

12

choreography modeling. In Proceedings of methoden, konzepte und technolo-
gien fur die entwiclkung von dienstebasierten informationssystemen (EMISA
2006), 2006.

[3] L. Fredlund. Implementing ws-cdl. In McErlang: a model checker for a
distributed functional programming language, pages 125–136, 2006.

[4] Niels Lohmann, Oliver Kopp, Frank Leymann, and Wolfgang Reisig. Ana-
lyzing bpel4chor: Verification and participant synthesis. In WS-FM, 2007.

[5] M. Rani, A. Kumar Chawla, and S. Batra. Web service choreogra-
phy description language (ws-cdl): Goals and benefits. COIT, 2006.
http://www.rimtengg.com/coit2007/proceedings/pdfs/49.pdf.

[6] B. Schmeling, A. Charfi, and M. Mezini. Composing non-functional concerns
in composite web services. In ICWS, pages 331–338, 2011.

[7] B. Silver. BPMN 2.0 Handbook. Workflow Management Coalition, 2011.

[8] Johannes Maria Zaha, Alistair P. Barros, Marlon Dumas, and Arthur H. M.
ter Hofstede. Let’s dance: A language for service behavior modeling. In
OTM Conferences (1), pages 145–162, 2006.

13

	Overview
	WS-CDL constructors
	Static Part
	RoleType
	ParticipantType
	RelationshipType
	ChannelType

	Dynamic Part
	Basic Activity
	Structural Activity
	WorkUnit-Notation

