Méthodes formelles

Mohamed Tounsi

Faculté des Sciences Économiques et de Gestion de Sfax

Avril 2015

Notion de proposition

Définitions

- Une proposition est un énoncé du langage ordinaire considéré du point de vue formel.
- Cet énoncé est soit <u>vrai</u> soit <u>faux</u> mais pas les deux,
- La proposition est <u>vrai</u> s'il y a une adéquation entre la proposition et les faits du monde réel, fausse sinon.

Exemples

- «Le chat du voisin est mort» est une proposition,
- «ce diapo explique la notion de proposition» est une proposition vrai.

Étude du calcul propositionnel

- Comment écrire les formules? (Aspects syntaxiques)
- 2 Comment déterminer la valeur de vérité d'une formule ? (Aspects sémantiques)
- Occident de montrer de nouveaux résultats ? (Aspects déductifs)

Aspects syntaxiques

Données

- ullet Un ensemble P de variables propositionnelles, P = { p, q, r, ... }
- Un ensemble C de connecteurs, $C = \{ \Rightarrow, \Leftrightarrow, \neg, \vee, \wedge \}$

Formules

- p est une formule si $p \in P$
- ¬ (H) est une formule si H est une formule
- $(H)\Delta(K)$ est une formule si H et K sont des formules et si $\Delta \in C$

Exemples

- (p) \land (q) ou aussi (p) \Rightarrow ((q) \Rightarrow (p))
- $(p)(q) \Rightarrow$: non valide

4 11 1 4 4 12 1 4 12 1 2 4 10 0

Aspects sémantiques

- Logique bi-valuée:
 - faux (0)
 - vrai (1)
- Notion d'interprétation: donner une valeur de vérité à une variable

$$\delta$$
 (p) $\in \{0,1\}$

- Interprétation des opérateurs:
 - A chaque connecteur c de C, on associe un opérateur c.
 - Par exemple, à \neg est associé l'opérateur unaire \neg de $\{0,1\}$ dans $\{0,1\}$:

$$\neg (0) = (1)$$

$$\neg (1) = (0)$$

Aspects sémantiques

Table de vérité

C'est un tableau dont les lignes représentent toutes les interprétations possibles.

р	q	¬р	$p \wedge q$	$p \lor q$	$p \Rightarrow q$	$p \Leftrightarrow q$
0	0	1	0	0	1	1
0	1	1	0	1	1	0
1	0	0	0	1	0	0
1	1	0	1	1	1	1

Aspects sémantiques

Tautologies

- formules toujours vraies,
- c-a-d, la table de vérité ne contient que des 1,
- exemple : $p \lor \neg p$

р	¬р	$p \vee \neg p$
0	1	1
1	0	1

Aspects sémantiques

Trois catégories de formules:

- Tautologies: formules toujours vraies,
- Formules inconsistantes:
 - formules toujours fausses,
 - la table de vérité ne contient que des 0,
 - exemple: $p \land \neg p$
- Formules consistantes: formules non toujours fausses,

$$\exists \delta, \delta(F) = 1$$

Aspects sémantiques

• Formules tautologiquement équivalentes:

Les tables de vérité sont les mêmes.

$$\forall \delta, \delta(F) = \delta(H)$$

• Condition nécessaire et suffisante:

$$(F) \Leftrightarrow (H)$$
 est une tautologie $\vdash (F) \Leftrightarrow (H)$

• Exemple:

 $\begin{array}{c} p \Rightarrow q \ et \ \neg p \ \lor \ q \ sont \ tautologiquement \ \'{e}quivalentes. \\ \\ On \ peut \ donc \ \'{e}crire: \\ \\ \vdash (p \Rightarrow q) \Leftrightarrow (\neg p \ \lor \ q) \end{array}$

Aspects sémantiques

Quelques équivalences utiles

- \bullet F \vee G == G \vee F
- $F \vee \neg F == 1$
- $\bullet \neg (\neg F) == F$
- $F \Rightarrow G == \neg F \lor G$
- $F \Leftrightarrow G == (F \Rightarrow G) \land (G \Rightarrow F)$
- $F \wedge G == G \wedge F$
- $F \wedge \neg F == 0$

Lois de Morgan

- $\bullet \neg (F \land G) == \neg F \lor \neg G$
- $\bullet \neg (F \lor G) == \neg F \land \neg G$

Aspects sémantiques

Propriétés de ∧ et ∨

- Associativité,
- distributivité (dans les deux sens),
- éléments neutres (0 pour ∨ et 1 pour ∧)
- éléments absorbants (1 pour \vee et 0 pour \wedge)

Formes normales

- avoir une représentation uniforme des formules du calcul propositionnel,
- limiter le nombre de connecteurs différents utilisés,
- limiter l'allure des formules rencontrées.

Aspects sémantiques

Forme normale disjonctive

- Une formule **F** est dite sous <u>forme normale disjonctive</u> ssi **F** est une disjonction de conjonctions de variables propositionnelles et de leur négation.
- Toute formule du calcul propositionnel est tautologiquement équivalente à une formule sous forme normale disjonctive.

Forme normale conjonctive

- Une formule **F** est dite sous <u>forme normale conjonctive</u> ssi **F** est une conjonction de disjonctions de variables propositionnelles et de leur négation.
- Toute formule du calcul propositionnel est tautologiquement équivalente à une formule sous forme normale conjonctive.

Aspects sémantiques

Formes normales (exemples)

- $(p \land q) \lor (p \land r)$ est une formule sous forme normale disjonctive non canonique.
- $(p \land q \land r) \lor (p \land q \land \neg r) \lor (p \land \neg q \land r)$ est une formule sous forme normale disjonctive canonique.

Aspects déductifs

Définitions

- \bullet Soit A = {F1, F2, F3, ... Fn} un ensemble de n formules de F, et G une formule,
- On dit que G est conséquence logique de A si et seulement si toute distribution de valeur de vérité satisfaisant simultanément toutes les formules de A satisfait G.
- $A \vdash G ssi \vdash (F1 \land \land Fn) \Rightarrow G$
- A \vdash G ssi F1 \land \land Fn \land \neg G est inconsistante (démonstration par l'absurde / notion de réfutation)

Exemples

 \bullet On a ainsi : {p \Rightarrow q, p} \vdash q et aussi {p \Rightarrow q, \neg q} \vdash \neg p

- 4 D ト 4 団 ト 4 団 ト 4 団 ト 3 豆 4 り 9

Aspects déductifs

- Un système formels S est la donné de:
 - un ensemble dénombrable V de symboles,
 - un ensemble F de formules $(F \subset V^*)$,
 - un ensemble A d'axiomes $(A \subset F)$,
 - un ensemble fini R de règles de déduction ou d'inférence.
- Une règle d'inférence est un ensemble de conditions et la conclusion qu'on peut en tirer.
- Par exemple: $p \Rightarrow q$ et p, on peut déduire q (règle du **modus ponens**)

Aspects déductifs

- Une démonstration (ou une déduction) dans un système formel S est une suite d'énoncés $A_1, \ldots A_n$ telle que :
 - A_i est un axiome de S, ou,
 - une conséquence des énoncés précédents par application d'une des règles de déduction
- Un théorème de S est le dernier énoncé d'une démonstration
- NB: différence entre conséquence logique et démonstration

Aspects déductifs

Soit J un ensemble de formules. Un énoncé A est dit déductible sous les hypothèses J, si et seulement s'il existe une suite finie dénoncés A_1 , $A_2, \ldots A_n$ telle que :

- \bullet $A_i = A$,
- pour tout i
 - A est un axiome ou,
 - A ∈ J ou
 - A découle d'énoncés précédents par application d'une règle d'inférence

On note $J \models A$

Aspects déductifs

Principales règles d'inférences:

modus ponens

$$p,\,p\Rightarrow q\vdash q$$

• modus tollens

$$p \Rightarrow q, \neg q \vdash \neg p$$

• syllogisme

$$p \Rightarrow q, q \Rightarrow r \vdash p \Rightarrow r$$

Aspects déductifs

Propriétés d'un système formel (théorèmes):

- Un système formel est <u>correct</u> ssi \models A alors \vdash A tout ce qui est démontrable est vrai
- Un système formel est <u>complet</u> ssi \vdash A alors \models A tout ce qui est vrai est démontrable