1 { | Leibniz
{ 0j Z Universitit
to9:4 || Hannover

Homomorphic Cryptography for
Cloud Computing

4™ DAAD Summer School on
Current Trends in Distributed Systems 2012

Henning Perl

Friday, September 7" 2012

Introductio FHE by Example Encrypted CPU Applications Conclusiol
-Sec oo oI m] [m]
[m] EEEEEEEE]

Introduction
A simple homomorphic scheme by example

An Encrypted CPU for Homomorphic Cryptography
Encrypted memory access — reading
Encrypted memory access — writing
Encrypted Arithmetic-Logical Unit

Real World Applications
Why are we not done yet?
Searching on Encrypted Data

Conclusion

Henning Perl | CTDS '12: Homomorphic Cryptography for Cloud Computing

Slide 2

S Introduction FHE by Example Encrypted CPU Applications Conclusion Leibniz
€C . o o u]
a [Ennnannsl

aT

Real World Applications

Introduction

Henning Perl | CTDS '12: Homomorphic Cryptography for Cloud Computing

Slide 3

Introduction 1; || Leibniz
02
-Sec Pk 10old

What is Homomorphic Cryptography?

Homomorphism := Structure-preserving map

w.r.t. operations: Crypto scheme:

©(a) + p(b) = ¢(a+ b) © = Encrypt

p(a) - p(b) = ¢(a- b) ¢~ = Decrypt
Conclusions:

Evaluation of arbitrary formulas with + and -

Decryption yields sum or product

= We can do stuff with ciphertexts!

Henning Perl | CTDS '12: Homomorphic Cryptography for Cloud Computing Slide 4

-Sec Ié];rztl)ggct\on “""
What All Can We Do?

= We can do stuff with ciphertexts!

Assume a homomorphic encryption scheme. What do we get?
Homomorphism: Addition/Multiplication of ciphertexts yields
sum/product after decryption
Next step: Plaintexts are Bits (P = Z/2Z)

Then:

a+b mod2~>adb (xor)

~~ Arbitrary boolean circuits
a-b mod2~>aAb (and)

Finally: Build a CPU out of boolean circuits
~~ Arbitrary programs in cipherspace.

Henning Perl | CTDS '12: Homomorphic Cryptography for Cloud Computing Slide 5

S Introduction FHE by Example Encrypted CPU Applications
By oo [aasas! a) o
[m] EEEEEEEE]

aT

Use-case in Cloud Computing
Client Cloud

1 = Ency(m)

Evaluate f(¢))
(in cipherspace)

Decy(f(v)))
= #(m)

Henning Perl | CTDS '12: Homomorphic Cryptography for Cloud Computing

Conclusio)
Notation:

m plaintext
Y ciphertext
f program
pk public key
sk secret key
Encyc encryption
Decy, decryption

Slide 6

[s R e
History of Homomorphic Cryptography

"Holy Grail" of cryptography for a long time

1978 Posed as open problem by Rivest et al.

2005 Evaluate 2-DNF formulas on ciphertexts, Boneh et al.

2009 Fully homomorphic encryption using ideal lattices by Craig Gentry
2010 Fully homomorphic encryption over the integers by van Dijk et al.

2012 Fully homomorphic encryption without bootstrapping by Brakerski et al.

Henning Perl | CTDS '12: Homomorphic Cryptography for Cloud Computing Slide 7

Introduction
s

Gentry's original scheme

Common construction:
Plaintext, ciphertext are rings (operations + and -)
Encryption is a homomorphism from plaintext to ciphertext
Operations on ciphertexts add noise

Decryption succeeds as long as noise remains within bounds

“Cleaning” the ciphertext (bootstrapping):
Represent decryption function as boolean circuit
Decrypt a ciphertext in ciphertext space ~~ “cleaner” new ciphertext
Requirements:

Decryption circuit must be shallow enough
Called bootstrappable-property

Henning Perl | CTDS '12: Homomorphic Cryptography for Cloud Computing Slide 8

S Introductior FHE by Example Encrypted CPU Applications Conclusio . ‘{ i b:;:'fma:
ec oo oI m] [m] !

109:4 § Hannover
[m] EEEEEEEE]
aT

A simple homomorphic scheme by example

A simple homomorphic scheme by example

Henning Perl | CTDS '12: Homomorphic Cryptography for Cloud Computing Slide 9

FHE by Example
CEs s

A simple homomorphic scheme by example

Goal:

Simple, easy to understand homomorphic scheme
Symmetric scheme (with key p)
Hardness based on prime number factorization

Not bootstrappable (i.e. not fully homomorphic)

Notation:

P — number of primes

a <i A — choose a from set A with uniform distribution

Henning Perl | CTDS '12: Homomorphic Cryptography for Cloud Computing Slide 10

FHE by Example
s _ssms]

Introduction

[m]

aT

Keygen, Encrypt, Decrypt

1: return random A-bit prime

1. r (i N
2: q & random A-bit number
3: return m+ 2r + pq

1: return (c mod p) mod 2

Henning Perl | CTDS '12: Homomorphic Cryptography for Cloud Computing

Encrypted CPU
m]

Applications Conclusion
[m]

EEEEEEEE]

Correctness:

Dec(Enc(m, p)) =m
< ((m+2r+ pg) mod p) mod 2
=(m+2r) mod2=m

Slide 11

Introduction FHE by Example Encrypted CPU Applications Conclusion
oo [_sun} [m} o

] [Essssnns]
o

Bit Operations

1: return ¢, + ¢,

1: return ¢; - ¢,

——
Henning Perl | CTDS '12: Homomorphic Cryptography for Cloud Computing Slide 12

FHE by Example
CEs i

Correctness
Remember: Encrypt(m, p) := c <~ m+ 2r+ pq

Xor [/ Addition
Decrypt(Xor(cy, ¢), p) = Decrypt(my + 2 + pq, 4+ m; + 21, + pgy, p) =
(((m1 +my)+2(n +n)+p(q, +q,)) mod p) mod 2 = m; + m,
And /[Multiplication

Decrypt(And(ci,), p) =
Decrypt((m; + 2 + pg,)(m, + 21, + pg,), p) =
((m1 -my +2r,m; + pq,m; + 2r,¢, + pg, cz) mod p) mod 2 = m; - m,

Henning Perl | CTDS '12: Homomorphic Cryptography for Cloud Computing Slide 13

S Introduction FHE by Example Encrypted CPU Applications Conclusion ¢
€C e auas o u} o 100!

S o

Putting in Numbers
p < Keygen(): Choose p = 23 int getRandomNumber ()
. turn Y,/ chosen by fair dice roll.
G Encrypt(o, p) rewm N guurqnte:’d to be random.
Choose q < 5 3
Choose r < 3
Choose
o 0+2-3+5-23— 120 |EXGPICSIN
¢ < Encrypt(1, p): @ ¢ =121+ 101 =222
Choose g+ 4 222 mod 23 = 15 ~~ 1
Choose r < 4
Choose o Nc =121-101 = 12221

6 1+4-344-23=101 12221 mod 23 =8 ~~ 0

Henning Perl | CTDS '12: Homomorphic Cryptography for Cloud Computing Slide 14

S Introductior FHE by Example Encrypted CPU Applications Conclusio
€C e orrm o o

[m] EEEEEEEE]
aT

The Problem With The Noise

Remember: m <— Decrypt(c) = (¢ mod p) mod 2
Decryption only works iff. a - b < p,a- b < p

p - q, 2-a;| m

= P'(Q1+q2) 2'(01+02) m; + m,

Henning Perl | CTDS '12: Homomorphic Cryptography for Cloud Computing

Slide 15

Introductio FHE by Example Encrypted CPU Applications Conclusio 171 Leibniz
1 0; 2 Universitit
-Sec [Eunnn| [Ennannl u} u] 10012 | Honver

[m] EEEEEEEE]
aT

Encrypted CPU — Overview

dai_m An Encrypted CPU for
Program o| Homomorphic Cryptography
5| Golamay Encrypted memory access —
ALU
] reading
data-out
AN /AN | Frags T ¥ Encrypted memory access —
; X |_‘ ik writing
! — Encrypted Arithmetic-Logical
Y egister .
| Feos Unit
Accumulator ALU

4—|

Henning Perl | CTDS '12: Homomorphic Cryptography for Cloud Computing

Slide 16

Encrypted CPU
BEs-:

Encrypted memory access — reading

m0..3 a0..1

+— Selection circuit
AND C(a7 m) _
PG s (ﬁao AN 0 AN mo) EB (00 AN a4 AN m1)@
p . (—|00 A\ a, A m2) EB (ao N aq N m3)
- Analysis
s Two memory addresses indistinguishable
Access pattern hidden
m single-bit memory cells = Oblivious read access
a address

¢ selected cell

Henning Perl | CTDS '12: Homomorphic Cryptography for Cloud Computing Slide 17

Encrypted CPU
BEs-: »

Encrypted memory access — writing

m0..3 a0..1

+— Selection circuit
AND C(a7 m) _
PG s (ﬁao VAN 0 A mo) D (00 A a4 A m1)@
p . (—|00 A\ a, A m2) EB (ao N aq N m3)
" Write access (write d to address a)
A - For each memory cell m:
m < (c(a, m) A d) @ (—c(a, m) D m)
m single-bit memory cells = Oblivious write access
o address

¢ selected cell

Henning Perl | CTDS '12: Homomorphic Cryptography for Cloud Computing Slide 18

Encrypted CPU
BEs-: »

| mum]

Encrypted Arithmetic-Logical Unit

Opcodes

09 07 Output 0o 07 Output
0 0 a+b 1 0 adb
0 1 aAb 1 1 —a

0 opcode

a first parameter

b second parameter

Henning Perl | CTDS '12: Homomorphic Cryptography for Cloud Computing

ALU function selection same as
memory selection

From here:

Fix machine word (i.e. 8 bits)
Add circuits for full adder,
carry-flag, zero-flag etc.

Slide 19

Encrypted CPU
BEs-: »

]

Plugging it together

ALU for arithmetric and logic operations

Group of smaller ALUs for program flow control etc.

Registers: encrypted bit columns

Memory: memory cells (encrypted bit columns) with access logic
Simple processor cycle:

FETCH1 read memory cell pointed at by program counter
FETCH2 read memory cell pointed at by fetched operand
EXEC execute operation in command register

WRITE write results to memory

Note: Every cycle performs all three memory access operations (needed
for obliviousness)

Henning Perl | CTDS '12: Homomorphic Cryptography for Cloud Computing Slide 20

S Introductio FHE by Example Encrypted CPU Applications Conclusio
ec oo oI o a

o EEEEEEEE]
un_u}

System architecture

Encrypted Program

Assembler Execution Engine

Cryptographic Library

Operating System [Java VM

Implementation Details
Memory word length: 13 bits = 8 bits data + 5 bits opcode
Architecture independent from concrete cryptosystem

One cycle takes & 2 ms (2.4 GHz Intel Core 2 Duo)

Henning Perl | CTDS '12: Homomorphic Cryptography for Cloud Computing Slide 21

Introductio FHE by Example Encrypted CPU Applications Conclusio i1 J Leibniz
1 0; 2 Universitit
-Sec [Eunnn| [Ennannl u} u] 10012 | Honver

o

e

Encrypted CPU — Summary

data-in
Program ~
Counter]
E_ Memory
S Cell Array
ALU
[w]|
data-out
ALU ALY Flags v
A Command
1 Register
I_‘ A4
‘} Data
Register
y
Accumulator ALU

4—|

Henning Perl | CTDS '12: Homomorphic Cryptography for Cloud Computing

Data is encrypted

Read accessible
Write accessible

Program is encrypted

All opcodes are encrypted
ALU output is encrypted

Code at http://hcrypt.com/shape-cpu/

Encrypted, Turing-complete machine

Slide 22

oduct v Examole ervpted CPU cati conclusio 17t | Leibniz
-Sec Introductiol FHE by Example [DH,\,JM cP gpp\lcatlons Conclusio

5] 1094 | Hannover
aT

Real World Applications

Real World Applications
Why are we not done yet?
Searching on Encrypted Data

Henning Perl | CTDS '12: Homomorphic Cryptography for Cloud Computing Slide 23

S Introductio FHE by Example Encrypted CPU Applications Conclusio
e€c oo oI m] u

[m] EEEEEEEE]
aT

Why are we not done yet?

Performance /‘ Confidentiality

unencrypted hybrid algorithm encrypted CPU

Unencrypted: very fast, familiar tools (compiler etc.)
but requires trust

Encrypted CPU: Turing-complete, encrypts data and program
but bad performance

Hybrid algorithm: seeks a compromise: protects confidential parts (just data,
just part of the data etc.), performs better than encrypted CPU

Henning Perl | CTDS '12: Homomorphic Cryptography for Cloud Computing Slide 24

Search with Boolean circuits

Input:
database

fc(word, searchterm)

word 0

word 1

word n — 2

L 4| \
\
\
\
\
\
\

word n — 1

Applications
| EEEEEEE]

Output: Indication-

Boolean circuit

T

encrypted
search term

Henning Perl | CTDS '12: Homomorphic Cryptography for Cloud Computing

.
\— :

0
1

ol°]

vector (encrypted)

- hit

Slide 25

S Introduction FHE by Example Encrypted CPU Applications Conclusion
ec oo oI m] o
[u] s _EEsEEE]

aT

Exact Search

Boolean circuit f.: Conjunction over
singe eters Depthoffc

Is|—1 bin(c;); bin(c,);
/\ (W/ CSI) \ /

Comparison =.: Conjunction over @\ /
binary representation

©®
/\,Bg2 ol bin(c;); @ bin(c,); & 1 \ /|\ /
aBbH1 |0 1 \/I\/

Henning Perl | CTDS '12: Homomorphic Cryptography for Cloud Computing

S -
S~

[log, log, X]

[og, [s[]

Slide 26

Applications
BEs-: -
[un sEEmE]

Use Case: Search on Human Genomes
Motivation:
Large database of human genomes
Future: personalized medications and therapies
Depend on patients’ DNA
=> database is public, query is confidential

But ...
too much data (100 MB up to several GB)
kills performance even with customized circuit
Solution: Prefilter results ~» Bloomfilter Search
~~ Hybrid algorithms

Henning Perl | CTDS '12: Homomorphic Cryptography for Cloud Computing Slide 27

Hybrid Algorithm for Searching

input

Bloomfilter

intermediate results

\ /
NS
A

results

circuits

Henning Perl | CTDS '12: Homomorphic Cryptography for Cloud Computing Slide 28

S Introduction FHE by Example Encrypted CPU Applications Conclusion
ec oo oI m] o

] [EsEs mux]
aT

S -
Ao~
S

Bloomfilters for words and sets

n hash functions fy . . . f,_;; Bloomfilter length m; alphabet X ; word w € ¥
helper function b(f(w)) = (...,0,_1 ,0,...) € [0,1]"

N
at f{w)
T — [0, n]" p(X7) — [0, n]"
B: n B: M|_> BW
wi= Y b(f(w)) wze;/l 0
=1
fw) =2 f(w=7 ?8;88?888%
W
[oJo[1]oo]o]o]1]0] 7ol o[0T [oTT0] {wo, wi}
01234567 8 o
012345678

Henning Perl | CTDS '12: Homomorphic Cryptography for Cloud Computing Slide 29

Applications
CEs -
[EnEEs)

Set membership with Bloomfilters

x = x¢ {a,b,c}

Bloomfilter with three hash functions

A~ A~

B(w) ¢ B(M) :< i € indexset : B(w)[i] > B(M)[] = w¢ M
eB

B(w)

~ ~

(M) :< Vi € indexset : B(w)[i] < B(M)[i] = we M

Henning Perl | CTDS '12: Homomorphic Cryptography for Cloud Computing Slide 30

Applications
CEs -
[EEEEE u]

Obfuscation of Bloomfilters
Goal: Fuzzyness in set membership: make w € M more probable
Method: Obfuscation with parameter A (here A = 4)

X

O(1j0j1{0|J0|11T|O0O|O|[T|Of1T|1]0]}1

| [[]

o({ojojt1rjojo0y11jo0|jo0ojojof1f1f0o0fo

Result: Given a Bloomfilter B = 3%™(A) for a set A and a (plain) Bloom filter
b = B%™(a) as well as an obfuscated version b’ = obfuscate(b, m, \):
bcB=b cB
b’ € B = Prlb € B] = 1/(***) ~ hiding in x %

Henning Perl | CTDS '12: Homomorphic Cryptography for Cloud Computing Slide 31

Applications
CEs -
[EEEEEES |

Index search with Bloomfilters

Bloomfilter tree: Index for database X
Search: divide-and-conquer in O(log(X))

B(X)
/ \
B’(X'o--m) (X.‘V*Jﬂk')

AAA

B({x}) B({x}) B({x}) B({xs}) B({x})B({x1})B({xi—1})B({x:})

Henning Perl | CTDS '12: Homomorphic Cryptography for Cloud Computing Slide 32

-Sec Conclusion

Conclusion

Homomorphic cryptography is a powerful tool

Relatively new development, more to come

Promising new applications, especially with security / performance
tradeoffs

Code available at http://hcrypt.com

Further research
Faster homomorphic cryptoschemes

More hybrid algorithms ~~ more applications

Thank You!

Henning Perl | CTDS '12: Homomorphic Cryptography for Cloud Computing Slide 33

http://hcrypt.com

	Introduction
	A simple homomorphic scheme by example
	An Encrypted CPU for Homomorphic Cryptography
	Encrypted memory access — reading
	Encrypted memory access — writing
	Encrypted Arithmetic-Logical Unit

	Real World Applications
	Why are we not done yet?
	Searching on Encrypted Data

	Conclusion

