

DAAD Summer CTDS 09, 24th - 26th September - Tunis

Ass. Prof. Jean-Yves Tigli – http://www.tigli.fr at the University of Nice Sophia Antipolis, delegated at INRIA in the team PULSAR

In collaboration with S. Lavirotte and G. Rey

Our experimental platform is as a Sharpdevelop Addon on .Net Framework. http://rainbow.i3s.unice.fr/wikiwcomp/

PART 1: REQUIREMENTS, TRENDS,
OPEN ISSUES ASSOCIATED WITH
MIDDLEWARE FOR UBIQUITOUS
COMPUTING

I.1 What do we mean by Ubiquitous Computing?

- [Mark Weiser 1991]
- « Silicon-based information technology, is far from having become part of the environment. »
- «The most profound technologies are those that dissappear. They weave themselves into the fabric of everyday life until they are indistinguishable from it.»

Scientific American, Vol. 265 N.9, pp. 66-75, 1991

I.1 Variations of Ubicomp

- Embedding for smart control
 - Embedded systems for cars, airplanes, etc.
- Creating new computing devices
 - Hi-tech, silicon-based gadgetry, e.g. PDAs, cell phones, mp3 players, active displays
- Connecting the existing physical world to a computational infrastructure
 - Ordinary objects and tasks re-evaluated and extended with computational/communication capabilities

II.2 NEW CHALLENGE DUE TO MOBILITY AND HETEROGENEITY OF DEVICES

- An ubiquitous environment
- Spheres of interaction of devices, from Personal Area Network to World Wide Web

KAINB@W

1.3 Main Ubiquitous Computing Characteristics

- Three main characteristics are:
 - Use embedded devices in a real environment
 - Deal with Multiple Heterogeneous Devices
 - Deal with Highly Dynamic variation at Runtime

I.4 Main Ubiquitous Computing Requirements

- Main requirements are :
 - Real Environment => Event based interaction from devices
 - Heterogeneous Devices => Discovery of new software entitites and devices
 - Highly Dynamic at Runtime => Deal with dynamic appareance and dispareance of devices
 - Highly Dynamic at Runtime => Deal with dynamic composition (at runtime)
 - Highly Dynamic at Runtime => Deal with dynamic adaptation (self- adaptation)

RAINB@W

crosina.

1.5 New Challenge and Open Issues

- Ubiquitous Computing applications are continuously interacting with a real world, partly unknown at design time and, always changing at runtime in uncountable manner
- We witness to a kind of inversion in the classical software methodology where the software applications levels are much more stable and stationary than the software infrastructure level.

Application level

Middleware level

Infrastructure level

1.6 Multi-Domain adaptation as open issue

- Ubiquitous Middleware must continuously adapt at runtime, application requirements to changing computing environment (due to mobility) in multiple domains:
 - HMI.
 - Power,
 - Network bandwidth.
 - Devices availability, ...

1.7 REACTIVE ADAPTATION AS OPEN ISSUE

- Reactive adaptation is defined the ability for the Ubiquitous applications to perceive the environment and adapt to changes in that environment in a timely fashion.
- Ubiquitous Middleware must provide reactive adaptation mecanism to changing operational environment.

RAIDBOW

1.8 SEMANTIC ADAPTATION AS OPEN ISSUE

 Ubiquitous Middleware must match at runtime the current operational environment and application requirements.

RAINB®W

PART II : OUR SOLUTION, CALLED WCOMP

- Software Infrastructure based on Web services for Device
- 2. Local composition (LCA model),
- 3. Distributed composition (SLCA model) and
- 4. Reactive adaptation using Aspects of Assembly (AA)

II.1 SERVICE ORIENTED ARCHITECTURE • Standard service cycle of use Service publishing Service producer Service producer DAAS Summer CIDS 09-1/1981-19818/polytechanicale

II.1 SOFTWARE INFRASTRUCTURE BASED ON WEB SERVICES FOR DEVICE

- Meet Service for Device characteristics
 - Example : UPnP and DPWS standards
- Three main evolutions from Web Services :
 - Distributed Service Publication / Discovery
 - Appareance / Disappearance Management
 - Eventing interaction model

II.1 DEMO : SERVICES FOR PHYSICAL DEVICES IN WCOMP

II.1 DEMO : SERVICES FOR VIRTUAL DEVICES IN WCOMP

II.2 BOTH COMPOSITION LEVELS

- Contrarly to most middleware approaches, distribution must be explicit to deal with the evolution of the infrastructure
- We need to distinguish between always available components and appearing / disappearing components

We distinguish:

- Local Composition: LCA (Lightweight Component Model) for each application execution node.
- Distributed Composition: SLCA (SLCA (Service Lightweight Component Model) to enable application execution node to communicate between them.

II.2 Main Features of LCA Model:

- Goal :
 - Allow to compose Services for Device between them towards a multiple devices ubiquitous application.
- Principles
 - LightWeight Components Approach:
 - Like OpenCom [204], JavaBeans [96], PicoContainer [205]
 - On the same execution node
 - For each execution node, a container dynamically manage the assembly of components
 - Event-based interaction between components
 - Blackbox LightWeight Components

RAINB@W

II.2 METAMODEL OF LCA Container Incomposition | Incompositio

II.3 SLCA DEMO IN WCOMP : CONTROL INTERFACE

II.4 REACTIVE ADAPTATION: ASPECT OF ASSEMBLY

- Aspect of Assembly
- Demo : AA in WComp
- Experiments and Results

RAINBOW

I LAST VASI

II.4 AA: I-ADVICES, COMPOSITION, AND CONFLITS

- External Composition :
 - I-Advices are « blackbox »
 - I-Advices are scheduled
 - Before, After, Around ...

- Internal Composition with Merge:
 - I-Advice are « whitebox »
 - Conflicted I-Advices can be merged according to a specific logic and its properties (ex. ISL [Berger 01], ISL4WComp, BSL [Cheung 09] ...)

AA: EXAMPLE OF SPECIFIC MERGING LOGIC AND ITS PROPERTIES

- Merging logic is based on rules modified according to the Advice language
- example of prooved properties in the composition / merging logic:

Commutativity: $AA0 \otimes AA1 = AA0 \otimes AA1$

Associativity: $(AA0 \otimes AA1) \otimes AA2 = AA0 \otimes (AA1 \otimes AA2)$

Idempotence: AA0 ⊗ AA0 = AA0

- Weaving mecanism became « Symmetric »
- Designer can apply a set of AA without caring of the their order.

II.4 DEMO : AA IN WCOMP

II.5 Cost of the weaving cycle: Pointcut Matching

- Parameter indentification
 - inb of applications of the advice i
 - -c: nb of components

$$a_1 = 28010^{-9}$$

$$a_2 = 2.10^{-3}$$

 Depend on the size of the initial assembly and the number of AA

R∕inB@W

RAINBOW

II.5 COST OF THE WEAVING CYCLE: WEAVING AND MODIFICATION

$$K = b.n^{0}.\sum_{i=1}^{N} n^{i} (1 + p_{i}.C(g_{0}, g_{i}))$$

- Parameter Identification
 - p_i : proba fusion
 - C: merging cost
 - n: number of rules
 - N: number of I-advices

$$b = 2.6.10^{-6}$$

 Only depend on the number of weaved AA

Nb weaved AA

III.2 FUTURE WORKS IN WCOMP

- Multi-Domain weaving for AA to adapt Mobile Workers applications (Cf. CONTINUUM project of the French National Research Agency towards « Continuity of Service »)
- From AA to AOM (Aspect oriented Modelling): a way to generalize Aspect to Adapt target architectures according to their model
- Improving of Pointcut Matching algorithms from Ontology-Based Metadata and mapping between ontologies (Cf. CONTINUUM project of the French National Research Agency towards « Continuity of Service »)

III.3 QUESTIONS?

Ass. Prof. Jean-Yves Tigli www.tigli.fr tigli@polytech.unice.fr

III.4 HISTORICAL REFERENCES

- Mark Weiser. "The Computer for the 21th Century."
 Scientific American, September 1991.
- Mark Weiser. "Some computer science issues in ubiquitous computing." Communications of the ACM, 36(7):75-85, July 1993.
- Mark Weiser, John S. Brown. "The Coming Age of Calm Technology." 1996.
- M. Satyanarayanan. "Fundamental Challenges in Mobile Computing." Fifteenth ACM Symposium on Principles of Distributed Computing, May 1996.
- M. Satyanarayanan. "Pervasive Computing: Vision and Challenges." IEEE Personal Communications, August, 2001.

05'09

III.5 WCOMP REFERENCES

- J.-Y. Tigli, S. Lavirotte, G. Rey, V. Hourdin, D. Cheung, E. Callegari, M. Riveill "WComp middleware for ubiquitous computing: Aspects and composite event-based Web services" in the journal *Annals of Telecommunications*, Springer Paris editor, ISSN 0003-4347 (Print) 1958-9395 (Online), Vol. 64, No 3-4, March-April 2009
- Vincent Hourdin, Jean-Yves Tigli, Stéphane Lavirotte, Gaëtan Rey, Michel Riveill, "SLCA, Composite Services for Ubiquitous Computing", in International Conference on Mobile Technology, Applications and Systems, Sep 2008.
- Daniel Cheung-Foo-Wo, Jean-Yves Tigli, Stéphane Lavirotte et Michel Riveill. « Self-adaptation of event-driven componentoriented Middleware using Aspects of Assembly ». Dans 5th International Workshop on Middleware for Pervasive and Ad-Hoc Computing (MPAC), California, USA, novembre 2007.

