
Mashups, SaaS, and Cloud Computing:

Evolutions and Revolutions in the

Integration Landscape

Boualem Benatallah (University of New South Wales, Australia /University of Blaise Pascal, France)

Based on tutorial at ICDE’09 with:

Fabio Casati (University of Trento, Italy),

Florian Daniel (University of Trento, Italy),

Jin Yu (University of New South Wales, Australia)

Agenda

• Issues and Solutions in Data and Application Integration

• SOA and Service Composition

• Mashups

• Integration, Mashups, and Cloud Computing • Integration, Mashups, and Cloud Computing

Integration/composition is key to operations

improvement and monitoring

Silos of data sources and
applications (before integration, no
global view)

Integrated systems: global view (important for cost
reduction, global visibility, and increased productivity)

Integrated data views

Example 1: Enterprise Information Integration (EII)

n 1Conference Organization Website CRM System
n AA1

Social Event Planning System

Blog: id, title, author, lastMod, url

Category: cid, name, kind

Authors: name, email, addr

Organization: name, street_addr, city, country

Contact: id, name, email, im, addr

Group: name, generator, updated, url

Blogger

Flickr

DBLP

Authors: name, email

Organization: name, addr,…

Papers: title, pages, year, conf

Blog: id, author, title, url, modified…

BlogCategory: cid, name, type,…

Posts: pid, poster_email, topic_id, …

Blog: id, content, link

Category: scheme, term

Enterprise DB

Customers: id, name, addr

Orders: oid, products, amount

Company: cid, name, addr

Google Contacts
Contact: id, kind, im, email, addr

Group: gid, generator, updated, …

Apple Address Book

Contact: name, email, im, addr, url

Group: name, url

DBLP

Example 2: Scientific

processes

Example 3: B2B Integration

Receive PO

Request

Select

Supplier

Generate

RFQ

Process

Send PO

Receive PO

Send PO

Customer

Receive PO

Send PO

Send PO

Supplier

Public process

(Standard)

Public process

(Standard)

Receive PO

Check

Customer

Check

Credit

Process

Sales Order

Private process

(Company-specific)

Private process

(Company-specific)

PO

CRM
RFQ

Send

RFQ

Select RFQ

Response

Send

PO

Close

Receive PO

Acknowledge

Receive PO

Response

Send PO Response

Acknowledge

Send PO

Acknowledge

Send PO

Response

Receive PO Response

Acknowledge

Credit

Check

Availability

Create Sales

Order

Send PO

Response

Close

CRM

SCM

ERP

(Source: e-business Architectures and Standards, Anil L. Nori, Tutorial, VLDB’2002, HongKong, China)

Example 4: Mashup (more on mashup later)

Development of Composite Applications
(In practice)

• Applications and data sources are

autonomously developed and deployed

• Proprietary technologies (communication

protocols, data formats, business and

presentation logic)presentation logic)

• Costly development and maintenance of

integrated systems especially in large and

dynamic environments

Interoperability Layers

Workflow

Internal system

Workflow

Internal System

Business Partner 1 Business Partner 2

Event

Synchronization
Event

External Interactions

Policy

User

Interface

External Interactions

Policy

User

Programs Programs

Data/Document

Transformation
Data/Document

Transformation

SynchronizationSynchronization

C/C++

Invocations
Java

Invocations

Middleware Infrastructure

CORBA (D)COM

Business

Logic Adapter
Business

Logic Adapter

Content of

document

Business

Protocol

Message

exchange

Interface

Content of

document

Business

Protocol

Message

exchange

User

Interface

Communication Layer

• Exchange of messages among partners

• Transport binding, communication modes such as asynchronous/ synchronous

• Partners must understand messages (agree on the formats)

• Message exchanges must be done in a secure way

• Message exchanges must be done in a reliable manner

• Partners use different protocols (or even proprietary protocols)• Partners use different protocols (or even proprietary protocols)

• Internet messaging (e.g., HTTP, SOAP), messaging middleware (e.g., IBM’s
MQSeries), EDI VANs, remote application services (Java RMI, CORBA IIOP), ...

• Interoperability objective

• independence from transport protocols

• Interoperability solutions

• Translate messages between heterogeneous protocols

• Examples of solutions

• Message broker/server, message transformer

Enterprise Application Integration

• Typically rely on distributed object frameworks such as
CORBA, DCOM, EJB and other state of the art technologies
such as database gateways and transaction monitors

• Separation between applications and infrastructure
services (e.g., persistence management, security services (e.g., persistence management, security
management, transaction management, trading, event,
naming services)

• EAI suites provide pre-built data and application integration
facilities (e.g., application adapters, data transformations,
and messaging services)

EAI (Enterprise Application Integration)

• Typically rely on distributed object frameworks such as CORBA,

DCOM, EJB and other state of the art technologies such as

database gateways and transaction monitors

• Developers focus on component specification and logic (e.g., using

CORBA IDL, programs), they do not need to know where remote

objects are located, in which languages they are implemented, how objects are located, in which languages they are implemented, how

they communicate, etc.

• Emphasis more on platforms integration: wrapping heterogeneous

systems, routing requests, remote operation invocation

• Common API layer: business objects are wrapped with explicit

interfaces, they communicate by making remote calls directly to

their peers

• Data, process, presentation level heterogeneities are worked out

offline/mostly manual (some tool support exist)

Content Layer: Message structure and

semantics

• Partners must understand the structure and semantics of messages

• E.g., does a document represents a purchase order? A request for
quote? A production description?

• Structures (e.g., different structures for a purchase order), services • Structures (e.g., different structures for a purchase order), services
may provide same functionality but with different operation structures
(e.g., different names, different signatures)

• Semantics: Does a service provides a required functionality? does Price
means Price including tax?

Buyer application

EDI

System

EDI

System

Network

connection

EDI Doc EDI Doc

Electronic Data Interchange

Backend System Backend System

VAN

connection

Buyer application Seller application

Data integration solutions

Integrated access to:

Multiple data sources/

data flow

• Data integration approaches: EII (virtual data views), ETL/data

flows (e.g., scientific processes/process data warehouse)

• Presentation logic is ad-hoc, and in hybrid applications, the

application logic is ad-doc

Data Integration (state of the art)

• Wrappers (uniform access to heterogeneous sources)

• Schema matching (e.g., linguistic / structural / ontology
analysis to identify elements similarity)

• Data Transformation languages (e.g., XSLT, XQuery)

• Models Management (recent work in the DB community)• Models Management (recent work in the DB community)

• Data flow languages (ETL, scientific workflows)

• Good progress, but more work is needed on usability and
consolidation

Business process Layer

• Semantics of interactions (joint business process)

• Partners must agree on the choreography of interactions and
meaning of messages

• E.g, steps (send order, process order, deliver product), deals (a
purchase is refundable after 2 days)

• Semantics of interactions must be well defined, such that there is • Semantics of interactions must be well defined, such that there is
no ambiguity as to:

• What a message may mean? What actions are allowed? What
responses are expected?

• For example, if a company A requires an acknowledgement of
purchase orders from its partners, then partner processes must
have a corresponding activity

Process/application integration

Composition/coordination

• Integration approaches: EAI/Workflow, SOA/BPEL• Integration approaches: EAI/Workflow, SOA/BPEL

• Presentation logic is ad-hoc

Business Process Layer (Cont.)

invoke receive

receive

receive invoke

invoke
?

?

Business Process Layer (cont.)

• Interoperability at this layer requires the
understanding of the behavior of partner public
processes (called external conversations, business
protocols)

• Traditional EAI middleware • Traditional EAI middleware

• component interface describes very little semantics
(e.g., message formats)

• business process is usually agreed upon off-line.

• Automation requires rich interface description models
but a balance between expression power and simplicity
is important for the success of the technology
(expressive: useful and usable)

Effective interface description should cater for:

• Making implicit information (as in closed environments) explicit

(essential in autonomous environments)

• Messages order (e.g., buy after login)

• Transactional implications (e.g., can I cancel a purchase?, if yes at

what cost)what cost)

• Temporal aspects (e.g, can I cancel a purchase any time? After a

fixed time period?)

• Security (will the results be digitally signed?)

• Privacy (How do you know if partners have compatible policies?)

• Quality of service (e.g., performance/reliability)

• Exception Handling (e.g., support for transaction protocols)

Workflow Management Systems

• Information

• Flow

• Resources

• Organization

22

DBMS
applications

sendmail
application

Online account
access

SAP accounting
system

XYZ

Automate business logic,
information flow

Control flow

Check Local Stock

Receive orderAdapter

Order

23

Check with supplier

Confirm Order

inStock=false

Cancel Order

inStock=true

shippingAvail=true

shippingAvail=false

Adapter

Order

goods

Data Transfer among Components

• Blackboard vs data flow

24

A

B

C

quantity
quantity

price

Services and

Service Service

composition

Web service

• A service available on the Web and designed to be

accessible by another application

• A web service is NOT the same thing as a service on

the Web

Historic standards

suppliercustomer

WSDL (or else) interfaces

suppliercustomer

SOAP-based
middleware

SOAP-based
middleware

SOAP (or else) messages
(over http, or smt else)

Services as components

Service ConsumerService Consumer
New ServiceNew Service

WrappedWrapped
LegacyLegacy

Interface ProxyInterface Proxy

ServiceService
InterfaceInterface

ServiceService
ImplementationImplementation

LegacyLegacy

CompositeComposite
ServiceService

WS-I SOA stack

Service composition

Check Local Stock

Receive orderAPI

Order

30

Check with supplier

Confirm Order

inStock=false

Cancel Order

inStock=true

shippingAvail=true

shippingAvail=false

API

Order

goods

Workflow system architecture

development
tools

SAP
adapter

Workflow model, +
possibly org model
(or go to enterprise
directories)

SAP

Email
app

31

workflow
engine

Workflow model

repository

execution logs
analytics
engine

Email
adapter

app

Custom
adapter

Account
mgmt

Elements of WS composition

middleware

development
tools

Web
service

Web
service

Company B

Company C

Service composition
language (up to now, no
org modeling)

32

composition

engine
Process model

repository

Process execution

logs

analytics
engine

Web
service

Web
service

Web
service

Company C

Company D

Company A

WS-BPEL 2.0

MyProcess

invoke

receive

receive

Basic

Activities

receive

reply

invoke

throw

exit

wait

empty

compensatevalidate��

assign

rethrow

extensionActivity

compensateScope

Partner
Links

Partner
Link Type

Port

Type 1

Port

Type 2

partner
link

partner
link

Variables
42

WSDL Message

XML Schema
Type

XML Schema
Element

Web Services
Business Process Execution Language

invoke

invoke

Structured
Activities if-else

while

scope

pick

sequence

flow

repeatUntil

forEach

Handlers

fault

handler

event

handler

fault

handler

compensation

handler

termination

handler

event

handler

Properties

Correlation Sets

Property 1

Property 2

BPEL and its richness

• Complex synchronization constructs

• Events

• Exceptions

• Compensation• Compensation

34

No KISS in Web Services

• WSDL and SOAP not that easy as well, not to

mention the other specs….

• Even if Web services were meant to be simple, born

to be simple..

35

MASHUPS

What are we talking about?

• Mashup – possible defintions

• “...a mashup is a web application that combines data from

more than one source into a single integrated tool…”

[wikipedia.com – March 24, 2009]

• “...you can integrate two or more […] Web APIs to create • “...you can integrate two or more […] Web APIs to create

something new and unique, known as a mashup…” [*]

• A mashup is a web application that is developed by

composing data, application logic, and/or user

interfaces originating from disparate web sources.

• Similar terms: service mashups, data mashups

* http://www.ibm.com/developerworks/webservices/library/ws-soa-mashups/index.html?S_TACT=105AGX04&S_CMP=EDU

Mashup = integration the Web 2.0 way

• Young integration practice using the Web as platform

• Highly user-driven

• Oftentimes the actual providers of content/functionality

are not even aware of being “wrapped”

• Google Maps example: initially skilled users hacked the

AJAX code of the application

• Strong evolution: from hacking to first systematic

development approaches in a few years

Let’s see an example

• The HousingMaps application (http://www.housingmaps.com)

composed of:

• Google Maps (http://maps.google.com)

• Craigslist (http://www.craigslist.com)

Demo

A mashup example

• HousingMaps (http://www.housingmaps.com)

• http://maps.google.com

• http://www.craigslist.com

GoogleMaps

Own application logic/UI

Craigslist

Web 2.0

• Web 2.0? Again, there are lots of different (and

sometimes diverging) definitions:

• “Web 2.0 is a term describing the trend in use of World

Wide Web technology and web design that aims to

enhance creativity, information sharing, and, most notably, enhance creativity, information sharing, and, most notably,

collaboration among users...” [wikipedia.com]

• “Web 2.0 is best described as a core set of patterns that

are observable in applications that share the Web 2.0

label. These patterns are services, simplicity, and

community…” [*]

* http://www.ibm.com/developerworks/webservices/library/ws-soa-mashups/index.html?S_TACT=105AGX04&S_CMP=EDU

The enabling factor of Web 2.0

• Over the last years we have been witnessing two

main trends on the Web:

• User participation in the content creation process (e.g.,

communities, social networks, blogs...)

• User participation in the development process (e.g., • User participation in the development process (e.g.,

mashups)

• Which are enabled or fostered by:

• Simplicity of usage: intuitive, interactive applications

• Simplicity of development: novel and standardized web

technologies

Some figures (programmableweb.com)

• Most popular

categories of mashups

• Most popular

web APIs

Dynamics of the ecosystem

• Constant growth since programmableweb.com went

online (over 600 days) [by Michael Weiss, Carleton University]

Number of APIs Number of mashups

• The mashup development scenario

Developing a mashup: what does it mean?

Component developer Mashup userMashup composer

45

develops

Mashup

component The Web

publishes

Description

Data sources

Technologies ...

Layouts
Styles

Architectures

Protocols

Languages

Formats

chooses writes

Mashup

application

uses

Mashup tool or

manual composition

discovers
and selects

mashes up

Distribution of apps over C and S

46Source: www.coachwei.com

Mashup component/API types

UI logic

App

C
li

e
n

t

C
/S

se
rv

ic
e

s

C
li

e
n

t

se
rv

ic
e

s

V
is

u
a

li
za

ti
o

n
 w

id
g

e
ts

C
o

m
p

le
x

w
id

g
e

ts

C
o

n
ve

n
ti

o
n

a
l W

e
b

a
p

p

47

Data

App

Data

S
e

rv
e

r

UI logic No UI

V
is

u
a

li
za

ti
o

n
 w

id
g

e
ts

C
o

m
p

le
x

w
id

g
e

ts

C
li

e
n

t
a

p
p

s

C/S apps

F
e

e
d

s

S
e

rv
e

r-

S
id

e
 s

e
rv

ic
e

s

C
o

n
ve

n
ti

o
n

a
l W

e
b

a
p

p

UI logic

App

C
li

e
n

t
The technological landscape

(D)HTML

AJAX

JSON,

Flash,

Silverlight

Data

App

Data

S
e

rv
e

r

UI logic

48

JSON,

XML
SOAP,

HTTP

PHP, Ruby,

Java, C++,...

XML,

RSS,

Atom

Relational

DBs,

OODBs,...

HTML,

templates,...

SOAP/WSDL web services

• Programming interfaces accessible over the Web

• WSDL = Web Service Description Language

• Abstract service description language (tech-agnostic)

• SOAP = Simple Object Access Protocol

• XML message exchange protocol• XML message exchange protocol

• SOA = Service-Oriented Architecture

• Producer, comsumer, registry (virtual marketplaces)

• Complex advanced features: security, reliability,

transactions, addressing,...

• Orechestration and choreography

RESTful web services

• A new architectural style of developing web services

• Principles

• Operations based on HTTP methods (Get, Post, Put, Delete)

• Services are stateless (no session data at the server side)• Services are stateless (no session data at the server side)

• Access via hierarchically structured URIs

• XML or JSON over HTTP

• Benefits

• Simplicity and immediacy

• No big overhead for composing and parsing messages

• More efficient service implementations

“Protocol” usage by APIs

Mashup development manually (1/2)

• Sceanrio 1 (at the beginning): No APIs available

• Developent tasks

• Read and interpret AJAX code of GMaps

• Hack into GMaps code to implement marker support• Hack into GMaps code to implement marker support

• Extract data from Craigslist with regular expressions (write

a wrapper)

• Format extracted data and forward data to GMaps

• Problems

• No stabel interfaces

• Highlyl error-prone and time-consuming

52

Mashup development manually (2/2)

• Scenario 2 (today): GMaps comes with AJAX API and

Craigslist provides an RSS feed

• Development tasks

• Instantiate GMaps component• Instantiate GMaps component

• Layout RSS feed

• Set markers through GMaps API

• Problems

• Manual development for skilled programmers

• Manual parsing of RSS feed

• No common Web API format

53

Partially assisted development

• There are many (online) tools for

• Data extraction from Web pages

• Web content clipping

>> Aid the development of mashup components or APIs

54

RoadRunner Demo

Fully assisted development

• Mashup tools/platforms

• Simplify the overall development process

• Provide easy-to-use development instruments

• Provide dedicated execution environments

• Support the whole lifecycle of mashup applications

• Enable even the less experienced user to mash up own

applications

• Let’s see some representative examples

• Yahoo Pipes, Intel Mash Maker, Microsoft Popfly, JackBe

Presto (yet, there are many others)

• Powerful, hosted data mashup tool for the

processing of

• RSS/Atom feeds

• XML/JSON data resources/services

• Targets skilled users and programmers

• Data flow approach (pipes)

• No support for user interface design

56

Demo

• Client-side browser extension for interactive mashup

development

• Data extracted from annotated web pages

• Widgets (UI components) for data visualization

• Copy/paste of Web contents into other Web pages

• Targets average Web users and programmers

• Data passing through environment variables

• No support for service components

57

Demo

• Highly interactive, hosted mashup platform for

consumer mashups

• Mashup “blocks” for data, application logic, and UIs

• Mainly JavaScript blocks

• Comes with own block builder

• Targets advanced Web users and programmers

• Data passing by coupling components and mapping

outputs to inputs

• Still weak support for UI components

58

Demo

• Full-fledged enterprise mashup platform with

desktop integration

• Main focus on data mashups

• Support for web services and (local) spreadsheet files

• Separate layout support for UIs (mashlets and portals)

• Targets advanced users and programmers

• Data flow logic

• Still limited layout capabilities

59

Demo

Our own research on mashups

• UI integration

• Stand-alone web apps as UI components

• Synchronization among components

• Universal integration• Universal integration

• UI, application logic, and data components

• One component model: abstract components, highlight

similarities

• One composition model: one formalism for

synchronization and orchestration

• Hosted development and execution

UI integration: visual editor

List of application

components

available for the

mashup. Additional
components may

easily be loaded

into the editor by

referencing the

respective online
resource.

Graphical model of the

composition logic.

Mahup logic modeling

canvas.

Tabs that allow the designer

to switch between different

views (e.g. composition logic

vs. layout) on the composite

application under
development.

The mashup application running

in a standard web browser

Deployment

Universal integration

UI componentService component Data flow connector

Component browser Composition canvas

Events and
operations

Hosted execution environment

Web user

interface Process engine

External

services

User
HTML

layout MDL UCL

Client Server

SOAP,
HTTP

SOAP,
HTTP

interface

UI component

instances
UI component

instances
UI component

instance

Process engine

Notification

handler

Long-running

processes

Data

adapter

SOAP

adapter

HTTP

adapter

UI component

instances
UI component

instances
Stateful service

instances

Client-side bus Server-side bus

Data

adapter
ListenerListenerState

manager
ListenerListenerMessge

adapters
ListenerListenerState

manager

HTTP HTTP

Hosted execution environment

• Development challenges:

• Seamless integration of stateful and stateless components

and of UI and service components

• Short-living and long-running process logics in the same

environmentenvironment

• Distribution of execution taks over client and server

• Transparent handling of multiple communication

protocols

Determines how components

are integrated to form the

mashup, assuming

components are

readily

available

Determines the nature of

components and influences

how components

can be glued

together

Analyzing mashup tools

Component

model

Composition

model

Assists the

developer in the mashup

process and eases

development

Enables the

execution of mashups

and determines how mashups

are delivered to their users

model

Development

environment

model

Runtime

environment

Component model

• Type

• Data (DA) vs. application logic (AL) vs. user interface (UI)

• Location

• Local vs. remote

• Direction of interaction• Direction of interaction

• One-way vs. two-way

• State

• Stateful vs. stateless

• Behavior

• Active vs. reactive

Composition model

• Type

• Data (DA) vs. application logic (AL) vs. user interface (UI)

• Orchestration style

• Flow-based vs. event-based vs. layout-based• Flow-based vs. event-based vs. layout-based

• Data passing style

• Data flow vs. blackboard

(without vs. with shared memory)

• State

• Stateful vs. stateless

• Instance model

• Instance-based or continuous

Development

environment

• Target users

• Web users vs. tech-savvy
users vs. programmers

• Interface paradigm

• Visual drag-and-drop vs. textual editors vs. combinations• Visual drag-and-drop vs. textual editors vs. combinations

• Type of support

• Composition only vs. composition + components vs.
component only

• System requirements

• Hosted, web-based vs. standalone

• Additional modules, plug-ins, or browser features

Runtime environment

• Deployment model

• Complied (web app based) vs.

interpreted (engine-based)

• Execution location

• Local vs. remote vs. hybrid

• System requirements

• Browser plug-ins or extensions?

• Scalability

• Number of data sources, in the number of models

(compositions), or in the number of users

Applicability of mashups

• But what about the utility of mashup applications?

• Mashups are still mostly 1-page apps...

• Only very few innovations are really breakthroughs,

most innovations only create little value

• Perfectly understanding customer needs, in order to

customize software and satisfy as much users as

possible, is costly – if not impossible

• Mashups may leverage “user innovation”:

• Users themselves know best what they want

• Mashups enable them to build their own applications

The long tail of the SW market

Number

[wikipedia.com]

Number

of users

Applications

A new development paradigm?

• Characteristics of modern web applications

• Fast development cycles (Internet time)

• Incremental development (prototype-based)

• Continuous online evolution

• The software life cycle of modern web applications is

no longer captured by traditional life cycle models

(e.g., the spiral or the waterfall model)

• And what about user-driven composition of web

applications and mashups?

Crowd

Programming

in the Clouds

Focus of this last section

• Saas and cloud not the focus, would need a seminar

on their own

• VMs, cooling and energy mgmt, utility computing…

• Goal here is to say what they are and why they are •

relevant / how they are related to mashups and

integration

Just like the early days of

Web services

Aaron Weiss: “Cloud computing,” as

it’s being called by everyone from

IBM to Google to Amazon to

Microsoft, is supposedly the next big

thing. But like the clouds themselves,

“cloud computing” can take on

different shapes depending on the

viewer, and often seems a little fuzzy

at the edges.

Larry Ellison’s view on the cloud

• "We've redefined cloud computing to include

everything that we already do. I can't think of

anything that isn't cloud computing with all of

these announcements.” these announcements.”

• “The computer industry is the only industry that is

more fashion-driven than women's fashion.

Maybe I'm an idiot, but I have no idea what

anyone is talking about.“

BuzzTracker

BuzzTracker – larger scale

Cloud computing and cloud services

• IT as a service

• Utility model

• Hosted… managed…

• Ideally, scalable, available, secure, efficient

• Pay per use, no upfront cost

• Handle peak loads

• Share information

• Enabled by connectivity, VM technology,

online/offline technology

WaaS – Whatever as a Service

DaaS

PaaS

IaaS

MaaS

SaaS

Challenges for cloud providers

• Scalable/available Multi-tenant infrastructure

• Privacy/security

• Business models, SLAs (and offering different

ones to different customers)

• Auditing

• Efficient resource utilization

• Usability

• Offline use

• New design patterns/models (application-driven)

Handle with care…

Five is enough…

• "I think there is a world market for maybe five

computers...” (1943)

• Thomas Watson (1874-1956), president and chairman of IBM

SaaS and SOA, Mashups…

• Originally meant for humans, use via browser

• Lately, saas apps provide api… distinction between

saas and soa is blurring

• Even if saas NOT born or dev with the idea of being • Even if saas NOT born or dev with the idea of being

components, not designed for this, sometimes they evolve

into them

• Examples of gmap and gdoc

• A lot more interesting services available

• Mashuppable

aaS mindset…

• Naturally leads to thinking API and thinking aaS

• Maybe it’s the fashion,…

• Think SME

• Everything is more “accessible”, even our own • Everything is more “accessible”, even our own

components

Ease of deployment/management

• Analogous to simplicity in mashup models

• I still have to develop my service/ service

composition / mashup, but

• No need to involve our IT dept or to purchase machines• No need to involve our IT dept or to purchase machines

• No need to wait 3 weeks because you found out that your

blade server consumes more energy than your wiring can

support

• No need to install/manage the dev platform

• Deploy with a click (and all the other goodies)

Share the integration logic

• PaaS can do for integration logic what SaaS / SOA do

for services

• Share, reuse

• Possible/easier to share programming knowledge, •

and specifically mashup and composition knowledge

BPM

SOA

Mashups

Composition languages

Composition platforms

Transactional compositions

Office / enterprise automation, for professionals

Services

Standards

Middleware protocols

Intra/inter enterprise automation, for professionals
BPM

Mashups

Cloud

Intra/inter enterprise automation, for professionals

Simple compositions

Separation simple/complex

Simpler standards

Coarse components

UI integration

Targets non-professionals

Relaxed non-functional requirments

Situational applications? Rapid prototyping?

Simplified deployment/mgmt

Scalability,…

Broad svc offering, Accessibility, Sharing

Components, composition tools, composition logic avail on the cloud

Middleware back in the platform?

BPM

SOA

Mashups
BPM

Mashups

Cloud

SOA
BPM

Domain Expert Programming

• Between flexible processes and quasi-situational

application

• “Process automation” at large

• Only way out: let domain expert do the “coding”

(and the prototyping, and the testing)

What do we need

• Programming languages not really for domain experts,
or not for automation of enterprise processes

• Either target problem or target users do not match or fit

• Offset complexity with knowledge reuse• Offset complexity with knowledge reuse

• Odds are, people (maybe experts) have done the same thing
before

• Reuse

• Insights on which components to use

• mashup/composition knowledge

• (Not talking about semantic web, goal-driven
automated composition,….)

Directions (?)

• IT becomes commodity

• Mashups for the People

• Some key challenges:

• How to make composition models/tools that are simple • How to make composition models/tools that are simple

enough and useful enough?

• How to build reusable components? What are the

characteristic of a “good” reusable component?

• Can only domain-specific models succeed?

Thanks

References

• Outsourcing Business to Cloud Computing Services: Opportunities and

Challenges

• Hamid R Motahari-Nezhad, Bryan Stephenson, Bryan Stephenson. HP Laboratories

HPL-2009-23

• Hewlett-Packard: The benefits of combining business-process outsourcing and

service-oriented architecture,service-oriented architecture,

• http://h20195.www2.hp.com/PDF/4AA0-4316ENW.pdf

• S. Murugesan. Understanding Web 2.0 IEEE IT Professional 9(4)

• A.Weiss, Computing in the clouds. ACM netWorker 11(4):16-25, Dec. 2007

• Shane Robison. The next wave: Everything as a service, Executive Viewpoint,

• http://www.hp.com/hpinfo/execteam/articles/robison/08eaas.html, 2007.

• MapReduce: simplified data processing on large clusters

• by: Jeffrey Dean, Sanjay Ghemawat

• Commun. ACM, Vol. 51, No. 1. (January 2008), pp. 107-113.

References (cont.)

• Werner Voegels. Eventually Consistent. ACM Queue.

October 2008

