
AO4AADL Compiler

Sihem Loukil

June 2011

We present in this report the main tools used in our work. Then, we
detail one of our main contributions. Finally, we present the several steps
to implement our ideas.

1 Ocarina suite tools

Ocarina [4] presents a free tool suite written in Ada to manipulate AADL
models. This tool suite includes three code generators which have attempted
to generate some programming languages such as Ada [5], C [2] and RTSJ
(Real Time Specification for Java) [1] from an AADL specification.

The architecture of Ocarina is composed of three main libraries which
are easily extensible :

1. A central library (libocarina) which presents a low abstraction level
to build and manipulate syntactic trees. It consists in a set of routines
that allows the two other libraries to handle and exchange syntactic
trees of any formalism.

2. A set of frontends that allows to analyze the syntax and semantics of
files written in AADL language using routines of the central library.
This part receives as input the AADL source files. It applies a syntactic
and semantic analysis on these files based on a file written in a pseudo
language that resembles to the IDL syntax to describe the grammar
of the used language. The main output of this part is an abstract
syntactic tree representing the file structure. The secondary outputs
consist of any warnings or error messages.

3. A set of backends whose role is to automatically produce code. They
are based on trees resulting from the frontends. This part receives
as input the resulting tree from the previous part. It applies a tree
expansion to simplify structures and produce an easier and richer tree.
After this expansion phase, the obtained AADL tree is transformed
into a syntactic tree of the target language. Finally, this tree allows
to proceed to the code generation.

1

The code generators offered by the Ocarina suite tools allow the genera-
tion of functional code from basic components of the AADL description. As
an example, we present here some of the transformation rules used by the
RTSJ generator. It allows to translate each node (process) of the architec-
ture described in AADL into a set of RTSJ classes using a well defined set
of transformation rules presented in [1].

In the following, we present some examples of the generated classes :

Subprograms class The RTSJ generator translates each subprogram called
by a task into a method of a class called Subprograms. Listing 2
presents an example of this transformation applied on the subprogram
Ping Spg given in Listing 1. As shown in the AADL specification,
this subprogram takes one Simple Type parameter called Data Sink.
So, this subprogram is transformed into a method called PingSpgImpl

(line 2, Listing 2) which takes as parameter a variable called dataSink.

2

1 subprogram Ping_Spg

2 features

3 Data_Sink : in parameter Simple_Type;

4 end Ping_Spg;

Listing 1: Example of AADL subprogram specification

1 public class SubPrograms {

2 public static void PingSpgImpl(GeneratedTypes.SimpleType dataSink) {

3 ...

4 }

5 }

Listing 2: Part of the generated RTSJ code

GeneratedTypes class This class includes all used data types. Listing 3
shows the transformation of the variable dataSink defined in line 2 of
Listing 2. Each data type is transformed to a class that takes the same
name of the data and implements the GeneratedType interface (line 6)
available at the package fr.enst.ocarina.polyORB HI runtime
(line 1).

1 import fr.enst.ocarina.polyORB_HI_runtime.GeneratedType;

2 ...

3

4 public class GeneratedTypes {

5

6 public static class SimpleType implements GeneratedType {

7

8 }

9 }

Listing 3: Part of the generated RTSJ code

Deployment class This class gathers all information of the current node
and the interaction between the current node and the other nodes of
the application. This class contains the identification number of the
node, the number of nodes in the application, the number of local
tasks it possesses and the identification numbers of the ports.

Activity class This class is used to manage the tasks and their job. The
tasks which belong to the current node are declared and initialized.

A PortsRouter1 object has to be created for each task to store or
get the messages in the global queue. To perform the proper routing
of messages via ports, all functions used by the PortsRouter object
are created in this class. Generally, the same functions as those in the

1a class available at the package fr.enst.ocarina.polyORB HI runtime

3

PortsRouter object are created but a new parameter is added for
each one, it’s the entity which allows in each function to know what
port is addressed. Then, in each case statement the right functions
with right parameters is called.

For example, we find the method public void sendOutput(int en-
tity, OutPort outPort) supposed to manage the sending of the data
through an output port.

2 Aspect code generation

We present in this section our extension to the Ocarina tool suite. It consists
in the generation of aspect programming language from aspectual annexes
described in AO4AADL. As mentioned, the generation of functional code
from basic components of the AADL description is already ensured by the
Ocarina tool suite. Our idea is therefore to extend Ocarina to ensure trans-
lation of the aspectual part taking advantage of the available generators.

Aspects described in AO4AADL can be translated in different aspect
languages since it is generic.

The study of the various existing aspect-oriented programming languages
has proofed that AspectJ [3] is the most popular aspect language due to its
widespread use with an emphasis on simplicity and ease of work for end
users. AspectJ presents an aspect-oriented extension for Java language.
Following this study, we chose to start generating aspects written in As-
pectJ language from the architectural aspects described in AO4AADL. To
apply these aspects, we need a base system described in Java language in
order to get a complete Java prototype. For this reason, we adopted in
our approach the RTSJ code generator from an AADL specification that is
already available in the Ocarina tool suite.

We define a set of transformation rules to map AO4AADL aspects into
AspectJ aspects. These transformation rules are based on the RTSJ gen-
erator ones in order to ensure the consistency between the RTSJ code and
the generated AspectJ code. In this way, a complete Java prototype can be
obtained by integrating automatically the generated AspectJ aspects in the
RTSJ code.

In the following, we present some examples of the transformation rules
from AO4AADL to AspectJ. As we mentioned previously, these rules are
based on the RTSJ transformation rules.

The transformation rules from AO4AADL to AspectJ are classified into
two categories : transformation rules for the pointcut and those for the
advice part.

4

2.1 Transformation rules of the pointcut

We present in this part the transformation rules2 used to translate the
AO4AADL pointcuts into AspectJ. As the pointcut presents a set of join-
points, we concentrate on the transformation of each type of joinpoint.

• Joinpoint intercepting a subprogram

Table 1 presents the rule which translates a joinpoint intercepting a
subprogram. As shown in Table 1, the interception of a subprogram
at architectural level in AO4AADL returns to intercept, in AspectJ,
the right method of the Subprograms class
(SubPrograms.<Subprogram Identifier>Impl) already generated by
the RTSJ generator. According to the syntax of AspectJ, we have
to specify the returning type of the intercepted method. As it was
mentioned, all generated methods are public static void . So we are
not interested in the generation of the returning type of the intercepted
method. That’s why, we use here the wildcard “*” in the generated
AspectJ code. For the parameter types used in AO4AADL, they obey
to the transformation rules of the data types defined by the RTSJ
generator.

Table 1: Transformation rule of a joinpoint intercepting a subprogram
AO4AADL specification:
call/execution subprogram (<Subprogram Identifier> (<Paramerter types>))

Generated AspectJ code:
call/execution (* SubPrograms.<Subprogram Identifier>Impl (<Generated Parameter Types>))

Listing 5 presents an example of the generated AspectJ code from
a pointcut described in AO4AADL which intercepts the execution
of the Ping Spg subprogram taking a Simple Type parameter. The
AO4AADL specification is presented in Listing 4.

1 aspect AspectName {

2 pointcut PointcutName () : execution subprogram (PingSpg (Simple_Type));

3 ...

4 }

Listing 4: Example of an AO4AADL pointcut intercepting a subprogram

1 aspect AspectName {

2 pointcut PointcutName () : execution (* SubPrograms.PingSpgImpl

3 (GeneratedTypes.Simple_Type));

4 ...

5 }

2The full version of these rules is available at http://www.redcad.org/projects/

AO4AADL

5

Listing 5: Generated AspectJ code from Listing 4

We have to note that no changes are applied neither to the aspect
and the pointcut names nor to the keywords ‘aspect ’, ‘pointcut ’ and
‘call/execution ’.

• Joinpoint intercepting an output port

In this case, the designer can intercept either the event of sending a
message or the type and/or the value of the data to send.

– Joinpoint intercepting the event of sending a message

In the case of intercepting the event of sending a message through
an output port at architectural level,
(call/execution outport (<Output Port Identifier> (..)))
we have to look for the methods (or subprograms) that carry out
the exchange of messages through this port at the implementa-
tion level. We suppose in this case that we are not interested in
the type of the data to send (the wildcard ‘..’).

According to the RTSJ generator, these methods are defined in
the Activity class. The study of these methods shows that the
interception of an output port in AO4AADL returns to intercept,
in AspectJ, the method sendOutput() of the Activity class.
This is illustrated in Table 2.

Table 2: Transformation rule of a joinpoint intercepting an output port
AO4AADL specification:
call/execution outport (<Output Port Identifier> (..))

Generated AspectJ code:
call/execution (* Activity.sendOutput(..))

Since all the used methods are public static void, we are not
then interested in its returning type. We use therefore the wild-
card “*” in the generated code.

As an example of this transformation rule, we present in List-
ing 7 the AspectJ code generated from the pointcut of the aspect
defined in Listing 6.

1 thread implementation ValidationTh.Impl

2 ...

3 annex ao4aadl {**

4 aspect CheckCode {

5 pointcut Verification(): call outport (Restore_Code_out_V (..));

6 ...

7 }

6

8 **}

9 end ValidationTh.Impl;

Listing 6: Example of AO4AADL annex

1 aspect CheckCode{

2 pointcut Verification(): call (* Activity.sendOutput(..));

3 ...

4 }

Listing 7: Generated AspectJ pointcut from listing 6

– Joinpoint intercepting the type and/or the value of the data to
send

If the designer is interested in intercepting the type or the value
of the data to send through an output port, then the correspond-
ing method at implementation level is the public static void
putValue of the Activity class. This method has the following
structure : public static void putValue (int entity, Out-
Port outPort, GeneratedType value) where entity presents
the identifier of the intercepted task, the Outport object refers
to the intercepted port while value is the value of the data to
send.

When intercepting only the type of the data to send (call/execution
outport (<Output Port Identifier>(<Data Type>))), the used
rule in this case is presented in Table 3. While, the interception
of the value of this data is translated as shown in Table 4.

Table 3: Transformation rule of a joinpoint intercepting the type of the data
to send through an output port

AO4AADL specification:
call/execution outport (<Output Port Identifier> (<Data Type>))

Generated AspectJ code:
call/execution (* Activity.putValue(.., .., GeneratedTypes.<Data Type>))

Table 4: Transformation rule of a joinpoint intercepting the value of the
data to send through an output port

AO4AADL specification:
call/execution outport(<Output Port Identifier>(..)) && args (<Data Identifier>)

Generated AspectJ code
call/execution (* Activity.putValue .. && args(..,.., <DATA IDENTIFIER>)

In the case of intercepting both the type and the value of the
data to send, we have simply to combine the rules presented in
Table 3 and Table 4.

7

As shown in the transformation rules presented in Tables 2, 3 and 4,
the identifier of the intercepted port is not specified in the generated
AspectJ code. To deal with this limitaion and to specify that the code
of the advice is executed only when the port specified at the architec-
tural joinpoint is really catched, the generated advice code should be
inserted under a condition that verifies the port’s identifier. This con-
dition is used to check if the OutPort parameter of the intercepted
method in the generated AspectJ code corresponds to the identifier of
the intercepted port specified in the AO4AADL code. Therefore, the
generated advice code (more specifically the advice action subclause)
has the following structure :

– For a before or after advice

if ((OutPort)(thisJoinPoint.getArgs([1]))).getPortNumber()==

Deployment.<Out_PORT_ID>){

//Generated advice action code

}

thisJoinPoint is an AspectJ object which refers to the inter-
cepted joinpoint. The method getArgs([1]) applied to this ob-
ject refers to the second parameter of the intercepted joinpoint.
The returned object is casted to the type OutPort to apply the
method getPortNumber() which returns the number of the inter-
cepted port. The <Out PORT ID> is defined in the Deployment
class. Each port has an identification number which has the for-
mat :
<NODE IDENTIFIER> <THREAD IDENTIFIER> <PORT IDENTIFIER> K.
For example the identification number of the output port RestoreCode out V

of the Validation task instance of the ValidationTh task de-
fined in the process Node Customer is :
Node Customer Validation RestoreCode out V K.

If the identifier of the port is not specified in the joinpoint spec-
ified in the AO4AADL code (we use the wildcard ‘*’), this con-
dition will not be generated since this aspect is applied to every
output port.

– For an around advice

∗ when intercepting the event of sending a data through an
output port

if ((OutPort) (thisJoinPoint.getArgs([1]))).getPortNumber()==

Deployment .<Out_PORT_ID>) {

//Generated advice action code

}

else{

proceed(<PARAMETER_PROFILE>);

}

8

The else condition is used here to define the executed code
when the intercepted output port in the AspectJ aspect is
different from the one intercepted in the AO4AADL aspect.
We call then the proceed() action to carry on with the exe-
cution of the basic RTSJ code.

∗ when intercepting the type and/or the value of the data to
send, an additional pointcut will be generated in the as-
pect. Actually, the intercepted method putValue() is asso-
ciated with the method sendOutput(). If the first method
is not executed by calling a proceed() action then the sec-
ond method should not be executed. So the second pointcut
is supposed to intercept the second method (sendOutput).
The name of this pointcut is the combination of the first
pointcut name and the suffix sendOutput . Moreover, two
advices are generated in this case. The first advice, which
is associated to the first pointcut, includes the advice code
generated from the AO4AADL advice code. We add to this
code a static boolean variable put OK initialized to false.
This variable takes the value true whenever the method put-
Value() is executed by calling the proceed() action, other-
wise it takes the value false. Concerning the second advice,
it is associated to the second pointcut and has the following
structure :

if ((OutPort) (thisJoinPoint.getArgs([1]))).getPortNumber()==

Deployment .<Out_PORT_ID>) {

if (put_OK){

proceed();

}

}

else{

proceed();

}

• Joinpoint intercepting an input port

For the joinpoints which intercept an input port, we follow the same
reasoning made in the case of intercepting an output port. Actually,
the study of the methods of the Activity class has proofed that the
interception of an input port at architectural level returns to inter-
cept, at implementation level, two main methods which are : (1) the
method public static void storeReceivedMessage which enables
the designer to know if there is a new incoming message to the input
port, and (2) public static void getValue allowing to intercept the
type and/or the value of the received data.

As a result, three transformation rules are used to translate a joinpoint
intercepting an input port from AO4AADL to AspectJ.

9

– Joinpoint intercepting the event of receiving a message

Table 5 presents the rule applied in the the case of intercepting
the event of receiving a message.

Table 5: Transformation rule of a joinpoint intercepting an input port
AO4AADL specification:
call/execution inport (<Input Port Identifier> (..))

Generated AspectJ code:
call/execution (* Activity.storeReceivedMessage(..))

– Joinpoint intercepting the type and/or the value of the received
data

In this case, two transformation rules are defined. Table 6 speci-
fies the rule used to intercept the type of the incoming data while
the rule presented in Table 7 is used when intercepting the value
of the incoming data.

Table 6: Transformation rule of a joinpoint intercepting the type of the
incoming data to an input port

AO4AADL specification:
call/execution inport (<Input Port Identifier> (<Data Type>))

Generated AspectJ code:
call/execution (* Activity.getValue(.., .., GeneratedTypes.<Data Type>))

Table 7: Transformation rule of a joinpoint intercepting the value of the
incoming data to an input port

AO4AADL specification:
call/execution inport(<Input Port Identifier>(..)) && args (<Data Identifier>)

Generated AspectJ code:
call/execution (* Activity.getValue(..)) && args (.., .., <DATA IDENTIFIER>)

The combination of the two last rules leads to the interception of
both the type and the value of the incoming data.

As we mentioned in the case of intercepting an output port, the gen-
erated advice should be inserted under a condition that verifies the
port’s identifier.

10

2.2 Transformation rules of the advice

We present in this part some examples of the transformation rules3 used to
translate the instructions used in the advice subclause from AO4AADL to
AspectJ.

For the generated advice declaration and the pointcut reference parts,
they keep the same structure used in AO4AADL. We have only omitted the
keyword ‘advice ’ and applied the transformation rules defined by the RTSJ
generator to translate the declared parameters.

Concerning the variables and the initially parts, they will be combined
in the generated AspectJ code. For each variable declared in the variables
subclause, the transformation rule presented in Table 8 is applied.

Table 8: Transformation rule of a variable declared in the variables sub-
clause
AO4AADL specification:
<Variable Identifier> : <Variable Type>;

Generated AspectJ code:
public static final GeneratedTypes.<Variable Type>

<VARIABLE IDENTIFIER> = new GeneratedTypes.<Variable Type>(<Variable Value>);

where <Variable Value> corresponds to the initial value of the variable
defined in the initially subclause. If this variable is not initialized then
a default value is attributed depending on the type of the variable. For
example, the default value of an integer type is 0. Listing 8 presents the
generated AspectJ code for a declared and initialized integer variable.

//AO4AADL specification

variables { counter : Integer_Type; }

initially { counter := 1; }

//Generated AspectJ code

public static final GeneratedTypes.IntegerType COUNTER =

new GeneratedTypes.IntegerType (1);

Listing 8: Generated AspectJ code for a declared and initialized integer
variable

What about the action subclause, we present the main defined transfor-
mation rules to obtain an AspectJ code from an AO4AADL specification. In
this subclause, the identifiers of the variables and parameters are translated
according to the transformation rule presented in Table 9.

This rule is applied for all the identifiers except those used in the commu-
nication and the proceed() actions. In this case, the generated identifiers
have the following structure : <VARIABLE OR PARAMETER IDENTIFIER>.

3The full version of these rules is available at http://www.redcad.org/projects/

AO4AADL

11

Table 9: Transformation rule of the identifiers of variables and parameters
used in the action subclause

AO4AADL specification:
<Variable or Parameter Identifier>

Generated AspectJ code:
<VARIABLE OR PARAMETER IDENTIFIER>.value

For the communication actions, we followed the transformation rules
used by the RTSJ generator. According to this generator, for a given node,
the generated Subprograms class includes only the subprograms called
by a task forming this node. Unfortunately, a subprogram can be used
inside the advice action without being called by any task. Our idea is
then to extend this class by generating, for each node, the methods that
correspond to the called subprograms in the AO4AADL aspects. Therefore,
calling a subprogram inside the advice action in the AO4AADL specification
returns to call the corresponding method in the Subprograms class for the
generated AspectJ code. Table 10 presents the transformation rule of the
operation of sending a message through an output port.

Table 10: Transformation rule of the operation of sending a message through
an output port
AO4AADL specification:
<Output Port Identifier> !(<Data Identifier>)

Generated AspectJ code
try {
Activity.putValue (Deployment.<THREAD ID>, Activity.<OUTPUT PORT IDENTIFIER>,

<DATA IDENTIFIER>);

}
catch (ProgramException e) {
Debug.debugMessage(”error while putting vale in port” +

Deployment.<OUTPUT PORT IDENTIFIER>.getPortNumber() +

”from entity” + Deployment.<THREAD ID>);

}
try {
Activity.sendOutput(Deployment.<THREAD ID>, Activity.<OUTPUT PORT IDENTIFIER>);

}
catch (ProgramException e) {
Debug.debugMessage(”Error while sending output in port +

Deployment.<OUTPUT PORT IDENTIFIER>.getPortNumber() +

”from entity ”+ Deployment.<THREAD ID>);

}

12

As shown in Table 10, this operation is translated into two methods :
(1) the putValue() method which enables to put the data on the port
and (2) the sendOutput() method to send the data to the corresponding
destination.

For the operation of receiving a message by an input port, it is trans-
lated into two other methods from the Activity class which are : (1) the
getValue() method which enables to get the data on the port and (2) the
nextValue() method to dequeue one entry from the input port’s queue.

Concerning the proceed() action, it keeps the same structure presented
in AO4AADL respecting the transformation rules applied to the identifiers.
What about the other types of instructions used in the action subclause, they
generally keep the same structure with some modification to suite the syntax
and semantics of AspectJ. Actually, the transformation from AO4AADL to
AspectJ is not so hard since the syntax and semantics of our language is
very close to the AspectJ ones.

Listing 10 presents the AspectJ code generated from the AO4AADL
aspect presented in Listing 9.

1 aspect CheckCode{

2 pointcut Verification(): call outport (Restore_Code_out_V (..));

3 advice around():Verification(){

4

5 variables { counter : Integer_Type; message : String_Type }

6 initially { counter:=1; message:= "Card Rejected !"; }

7

8 if(counter=3){

9 Rejected_Card_out_V!(message);

10 }

11 else{

12 proceed();

13 counter := counter+1;

14 } }}

Listing 9: Example of an aspect described in AO4AADL

1 //List of import instructions generated in every AspectJ file

2 import fr.enst.ocarina.polyORB_HI_runtime.OutPort;

3 import fr.enst.ocarina.polyORB_HI_runtime.InPort;

4 import fr.enst.ocarina.polyORB_HI_runtime.ProgramException;

5 import fr.enst.ocarina.polyORB_HI_runtime.Debug;

6 import fr.enst.ocarina.polyORB_HI_runtime.Message;

7

8 aspect CheckCode{

9 //The generated AspectJ pointcut

10 //In our case, we intercept the event of sending a data through an output port

11 pointcut Verification(): call (* Activity.sendOutput (..));

12

13 //The variables generated from the variables and initially sections

14 public static final GeneratedTypes.IntegerType COUNTER =

15 new GeneratedTypes.IntegerType(1);

16

17 public static final GeneratedTypes.StringType MESSAGE =

18 new GeneratedTypes.StringType("Card Rejected !");

19 //The generated Advice code

13

20 void around():Verification(){ //Advice declaration

21

22 //The condition that checks the intercepted port

23 //In our case the identification number of the output port is

24 //NODE_CUSTOMER_VALIDATION_RESTORECODE_OUT_K

25 if (((OutPort)(thisJoinPoint.getArgs()[1])).getPortNumber()==

26 Deployment.NODE_CUSTOMER_VALIDATION_RESTORECODE_OUT_K){

27

28 //The generated advice action part

29 if(COUNTER.value==3){

30 // Set the call sequence OUT port values

31 try {

32 Activity.putValue(Deployment.NODE_CUSTOMER_VALIDATION_K,

33 Activity.REJECTEDCARD_OUT_V, MESSAGE);

34 }

35 catch (ProgramException e) {

36 Debug.debugMessage("Error while putting value in port "

37 +Deployment.NODE_CUSTOMER_VALIDATION_REJECTEDCARD_OUT_K

38 + " from entity " + Deployment.NODE_CUstomer_VALIDATION_K);

39 }

40 // Send the call sequence OUT port values

41 try {

42 Activity.sendOutput(Deployment.NODE_CUSTOMER_VALIDATION_K,

43 Activity.REJECTEDCARD_OUT_V);}

44 catch (ProgramException e) {

45 Debug.debugMessage("Error while sending output in port "

46 + Deployment.NODE_CUSTOMER_VALIDATION_REJECTEDCARD_OUT_K

47 + " from entity " + Deployment.NODE_CUSTOMER_VALIDATION_K);}

48 COUNTER.value=1;

49 }

50 else{

51 //The proceed action

52 proceed();

53

54 //The generated code from the assignment action

55 //In this case, the operator ":=" used in AO4AADL is transformed

56 //to the operator "="

57 //For the arithmetic operations, no changes are applied to

58 //the operators {*, /, +, -}

59 COUNTER.value=COUNTER.value+1;

60 }}

61 //This code will be executed if the intercepted port is not RestoreCode_Out_V.

62 else{proceed();}}}

Listing 10: AspectJ code generated from listing 9

In Listing 10, lines 2–6 shows the list of the imported files that should be
present in every generated AspectJ file. Line 11 corresponds to the generated
pointcut. Lines 14–18 presents the list of the generated local variables. The
generated advice code is presented in lines 20–62.

References

[1] Thomas Autret. Génération de code Real-Time Java pour systèmes
temps-réel. Master’s thesis, Universit Pierre & Marie Curie, Paris VI,
sep 2009.

14

[2] J. Delange, J. Hugues, L. Pautet, and B. Zalila. Code Generation Strate-
gies from AADL Architectural Descriptions Targeting the High Integrity
Domain. In 4th European Congress ERTS, Toulouse, France, jan 2008.

[3] Russell Miles. AspectJ Cookbook. O’Reilly Media, Inc., 2004.

[4] T. Vergnaud, B. Zalila, and J. Hugues. Ocarina: a Compiler
for the AADL. Technical report, École Nationale Supérieure des
Télécommunications, jun 2006.

[5] Bechir Zalila. Configuration et déploiement d’applications temps-réel
réparties embarquées à l’aide d’un langage de description d’architecture.
PhD thesis, École Nationale Supérieure des Télécommunications, nov
2008.

15

