
Transformation rules from AO4AADL to
AspectJ

1 Introduction

We define a set of transformation rules to map AO4AADL aspects into As-
pectJ aspects. These transformation rules are based on the RTSJ generator ones
in order to ensure the consistency between the RTSJ code and the generated
AspectJ code.

In this way, a complete Java prototype can be obtained by integrating auto-
matically the generated AspectJ aspects in the RTSJ code.

In the following, we present some examples of the transformation rules from
AO4AADL to AspectJ.

2 Transformation of Keywords

Table1. Transformation of keywords

AO4AADL AspectJ

aspect aspect

pointcut pointcut

call inport

call
call outport
call inoutport
call subprogram

execution inport

call
execution outport
execution inoutport
execution subprogram

args args

advice advice

before before

after after

around void around

AO4AADL AspectJ

proceed proceed

if if

else else

for for

while while

variables -

initially -

applies -

to -

precedence Declare precedence :

in -

count -

thread -

process -

subprogram -

3 Transformation of Data

Since the data used in the AO4AADL description are already declared in the
basic AADL model, we simply use generated classes from this model using the

2

RTSJ code generator. In other words, there will be no new transformation rules
of data generation for aspect-oriented model.

4 Transformation of identifiers

In AO4AADL, identifiers still unchanged in AspectJ. If a name conflict can
be generated in the AspectJ code, this collision is resolved by prefixing the
generated name using an underscore ().

Identifiers of ports and subprograms they are transformed using the following
rules and taking into consideration the rules of the RTSJ generator :

Table2. Transformation rule of a joinpoint intercepting an input port

AO4AADL
specification

<Port Identifier>

Generated
AspectJ code

Activity.<PORT IDENTIFIER>

For example, considering a port called � RestoreCode out V �, the identifier
of this port will be in AspectJ � Activity.RESTORECODE OUT V �.

Table3. Transformation rule of a joinpoint intercepting an input port

AO4AADL
specification

<Subprogram Identifier>

Generated
AspectJ code

SubPrograms.<Subprogram Identifier>Impl

For example, considering a subprogram called � CheckValidity�, the identi-
fier of this subprogram will be in AspectJ � SubPrograms.CheckValidityImpl�.

5 Transformation of parameters

In AO4AADL, the declaration of the list of parameters used in the pointcuts
and the advices have always the following structure :

<Parameter_Identifier> : <Parameter_Type>

In AspectJ, the order of declaration will be reversed by not reporting the
two points separating the identifier of its type. For the type of parameter, it
obeys the transformation rules of the RTSJ generator. Thus, the declaration of
variables in AspectJ has the following structure :

GeneratedTypes.<Parameter_Type> <PARAMETER_IDENTIFIER>

Transformation rules from AO4AADL to AspectJ 3

6 Transformation of precedence subclause

In AO4AADL, the declaration of the priority of aspects is performed in the
precedence subclause. This subclause has always the following structure :

precedence <Aspect_Identifier> { , <Aspect_Identifier>}

The precedence subclause is mapped to AspectJ while keeping the same
structure. We have just to replace the keyword precedence by Declare pre-
cedence :. Thus the generated AspectJ code has the structure as follows :

Declare precedence : <Aspect_Identifier> { , <Aspect_Identifier>}

7 Transformation of pointcuts

A pointcut consists of one or a combination of a set of joinpoints using logical
operators (&&) and (||).

The transformation of a pointcut returns then to the combination of the
transformations of each joinpoint using the same logical operators.

8 Transformation of joinpoints

The main concepts that we catch in the specification of a joinpoint are
ports and subprograms. In the following, we present how all the joinpoint types
(inport outport and subprogram) with a call or execution primitive are
translated into AspectJ to obtain a valid code.

The inoutport joinpoints are not yet treated as the inout port type is rarely
used in AADL models and because it can easily switch ports by using in and
out ports.

For the args primitive, it is kept unchanged in AspectJ when it is combined
with a subprogram joinpoint. Otherwise, it follows the transformation rules
that we present in this section.

– Joinpoint intercepting a subprogram
Table 4 presents the rule which translate a joinpoint intercepting a subpro-
gram. As shown in Table 4, the interception of a subprogram at architectu-
ral level in AO4AADL returns to intercept, in AspectJ, the right method of
the Subprograms class (SubPrograms.<Subprogram Identifier>Impl)
already generated by the RTSJ generator. According to the syntax of As-
pectJ, we have to specify the returning type of the intercepted method. As
it was mentioned, all the generated methods are public static void . So
we are not interested in the generation of the returning type of the inter-
cepted method. That’s why, we use here the wildcard “*” in the generated
AspectJ code. For the parameter types used in AO4AADL, they obey to
the transformation rules of the data types defined by the RTSJ generator.
Listing 1.2 presents an example of the generated AspectJ code from a
pointcut described in AO4AADL which intercepts the execution of the

4

Table4. Transformation rule of a joinpoint intercepting a subprogram

AO4AADL
specification

call/execution subprogram (<Subprogram Identifier>
(<Paramerter types>))

Generated
AspectJ code

call/execution (* SubPrograms.<Subprogram Identifier>Impl
(<Generated Parameter Types>))

Ping Spg subprogram taking a Simple Type parameter. The AO4AADL
specification is presented in Listing 1.1.

1 aspect AspectName {
2 pointcut PointcutName () : execution subprogram (PingSpg (Simple_Type));
3 ...
4 }

Listing 1.1. Example of an AO4AADL pointcut intercepting a subprogram

1 aspect AspectName {
2 pointcut PointcutName () : execution (* SubPrograms.PingSpgImpl (GeneratedTypes.Simple_Type));
3 ...
4 }

Listing 1.2. Generated AspectJ code from Listing 1.1

We have to note that no changes are applied neither to the aspect and the
pointcut names nor to the keywords ‘aspect ’, ‘pointcut ’ and ‘call/execution ’.
When the designer wants to intercept the values of the parameters defined
in the considered subprogram he aught to use the following transformation
rule :

Table5. Transformation rule of a joinpoint intercepting the type of the data to send
through an output port

AO4AADL
specification

call/execution subprogram (<Subprogram Identifier>
(<Paramerter Types>)) && args (<Parameter Identifiers>)

Generated
AspectJ code

call/execution (* SubPrograms.¡Subprogram Identifier¿Impl
(<Generated Paramerter Types>)) && args
(<PARAMETER IDENTIFIERS>)

Listing 1.3 presents a joinpoint described in AO4AADL intercepting the
call of a subprogram called spg tanking two parameters. Listing 1.4 the
corresponding generated AspectJ code.

1 pointcut P (i:Integer_Type, j:Integer_Type) :
2 call subprogram spg (..) && args (i,j);

Listing 1.3. Transformation d’un joinpoint interceptant un sous programme

Transformation rules from AO4AADL to AspectJ 5

1 pointcut P (GeneratedTypes.IntegerType I,GeneratedTypes.IntegerType J):
2 call Subprogram.spgImpl (..) && args (I,J);

Listing 1.4. Generated AspectJ code from Listing 1.4

– Joinpoint intercepting an output port
In this case, the designer can intercept either the event of sending a message
or the type and/or the value of the data to send.
– Joinpoint intercepting the event of sending a message

In the case of intercepting the event of sending a message through an out-
put port (call/execution outport (<Output Port Identifier> (..)))
at architectural level, we have to look for the methods (or subprograms)
that carry out the exchange of messages through this port at the imple-
mentation level. We suppose in this case that we are not interested in
the type of the data to send (the wildcard ‘..’).
According to the RTSJ generator, these methods are defined in the Acti-
vity class. The study of these methods shows that the interception of an
output port in AO4AADL returns to intercept, in AspectJ, the method
sendOutput() of the Activity class. This is illustrated in Table 6.

Table6. Transformation rule of a joinpoint intercepting an output port

AO4AADL
specification

call/execution outport (<Output Port Identifier> (..))

Generated
AspectJ code

call/execution (* Activity.sendOutput(..))

Since all the used methods are public static void, we are not then
interested in its returning type. We use therefore the wildcard “*” in
the generated code.
As an example of this transformation rule, we present in Listing 1.6
the AspectJ code generated from the pointcut of the aspect defined in
Listing 1.5.

1

2 aspect CheckCode {
3 pointcut Verification(): call outport (Restore_Code_out_V (..));
4 ...
5 }

Listing 1.5. Example of AO4AADL pointcut intercepting an output port

1 aspect CheckCode{
2 pointcut Verification(): call (* Activity.sendOutput(..));
3 ...
4 }

Listing 1.6. Generated AspectJ pointcut from listing 1.5

6

– Joinpoint intercepting the type and/or the value of the data to send
If the designer is interested in intercepting the type or the value of the
data to send through an output port, then the corresponding method at
implementation level is the public static void putValue of the Acti-
vity class. This method has the following structure : public static void
putValue (int entity, OutPort outPort, GeneratedType value)
where entity presents the identifier of the intercepted thread, the Out-
port object refers to the intercepted port while value is the value of
the data to send.
When intercepting only the type of the data to send (call/execution
outport (<Output Port Identifier>(<Data Type>))), the used rule
in this case is presented in Table 7. While, the interception of the value
of this data is translated as shown in Table 8.

Table7. Transformation rule of a joinpoint intercepting the type of the data to send
through an output port

AO4AADL
specification

call/execution outport (<Output Port Identifier>
(<Data Type>))

Generated
AspectJ code

call/execution (* Activity.putValue(.., ..,
GeneratedTypes.<Data Type>))

The first and second types of the arguments of the method putValue()
are not specified because we are not interested in these arguments. In
addition, these two types of arguments are always fixed.

Table8. Transformation rule of a joinpoint intercepting the value of the data to send
through an output port

AO4AADL
specification

call/execution outport (<Output Port Identifier>(..)) &&
args (<Data Identifier>)

Generated
AspectJ code

call/execution (* Activity.putValue(..)) && args (.., ..,
<DATA IDENTIFIER>)

In the generated AspectJ code, the first and the second arguments of
the args primitive, corresponding to the first and the second parameters
of the method putValue(), are not specified because they are constant
and can be deducted easily from the generated RTSJ code.
In the case of intercepting both the type and the value of the data to
send, we have simply to combine the rules presented in Table 7 and
Table 8.
Listing 1.7 presents a joinpoint intercepting the value of the data to
send through an output port described in AO4AADL. The corresponding
AspectJ code is presented in Listing 1.8.

Transformation rules from AO4AADL to AspectJ 7

1 pointcut catchOutportData(value: Integer_Type):
2 call outport (Port_out(..))&& args (value);

Listing 1.7. Transformation d’un joinpoint interceptant un port de sortie

1 pointcut catchOutportData (GeneratedTypes.IntegerType VALUE):
2 call(* Activity.putValue(..)) && args (..,..,VALUE);

Listing 1.8. Transformation d’un joinpoint interceptant un port de sortie

As shown in the transformation rules presented in Tables 6, 7 and 8, the
identifier of the intercepted port is not specified in the generated AspectJ
code. To deal with this limitaion and to specify that the code of the advice
is executed only when the port specified at the architectural joinpoint is
really catched, the generated advice code should be inserted under a condi-
tion that verifies the port’s identifier. This condition is used to check if the
OutPort parameter of the intercepted method in the generated AspectJ
code corresponds to the identifier of the intercepted port specified in the
AO4AADL code. Therefore, the generated advice code (more specifically
the advice action subclause) has the following structure :
– For a before or after advice

if ((OutPort)(thisJoinPoint.getArgs([1]))).getPortNumber()==
Deployment.<Out_PORT_ID>){
//Generated advice action code
}

thisJoinPoint is an AspectJ object which refers to the intercepted join-
point. The method getArgs([1]) applied to this object refers to the se-
cond parameter of the intercepted joinpoint. The returned object is cas-
ted to the type OutPort to apply the method getPortNumber() which
returns the number of the intercepted port. The <Out PORT ID> is defi-
ned in the Deployment class. Each port has an identification number
which has the format : <NODE IDENTIFIER> <THREAD IDENTIFIER> <PORT IDENTIFIER> K.
For example the identification number of the output port RestoreCode out V

of the Validation thread instance of the ValidationTh thread defined
in the process Node Customer is Node Customer Validation RestoreCode out V K.
If the identifier of the port is not specified in the joinpoint specified in
the AO4AADL code (we use the wildcard ‘*’), this condition will not be
generated since this aspect is applied to every output port.

– For an around advice
– when intercepting the event of sending a data through an output port

if ((OutPort) (thisJoinPoint.getArgs([1]))).getPortNumber()==
Deployment .<Out_PORT_ID>) {
//Generated advice action code
}
else{

proceed(<PARAMETER_PROFILE>);
}

8

The else condition is used here to define the executed code when the
intercepted output port in the AspectJ aspect is different from the
one intercepted in the AO4AADL aspect. We call then the proceed()
action to carry on with the execution of the basic RTSJ code.

– when intercepting the type and/or the value of the data to send, an
additional pointcut will be generated in the aspect. Actually, the inter-
cepted method putValue() is associated with the method sendOut-
put(). If the first method is not executed by calling a proceed() action
then the second method should not be executed. So the second point-
cut is supposed to intercept the second method (sendOutput). The
name of this pointcut is the combination of the first pointcut name
and the suffix sendOutput . Moreover, two advices are generated in
this case. The first advice, which is associated to the first pointcut,
includes the advice code generated from the AO4AADL advice code.
We add to this code a static boolean variable put OK initialized to
false. This variable takes the value true whenever the method put-
Value() is executed by calling the proceed() action, otherwise it
takes the value false. Concerning the second advice, it is associated
to the second pointcut and has the following structure :

if ((OutPort) (thisJoinPoint.getArgs([1]))).getPortNumber()==
Deployment .<Out_PORT_ID>) {
if (put_OK){

proceed();
}

}
else{

proceed();
}

Listing 1.9 shows an example of an AO4AADL aspect intercepting the
value of information to send via an output port. An around advice is
applied to the pointcut. Listing 1.10 shows the generated AspectJ code
from Listing 1.9.

1 aspect Example{
2 pointcut catchOutportData(argument: Integer_Type):
3 call outport(Port_out(..))&& args (argument);
4 advice around (argument: Integer_Type): catchOutportData(argument){
5 if (condition_1){
6 proceed(argument);
7 argument:=argument+1;
8 }
9 else{ //instructions_else

10 } }}

Listing 1.9. Aspect interceptant un port de sortie avec un advice around

1 aspect Example{
2 pointcut catchOutportData (GeneratedTypes.IntegerType ARGUMENT):
3 call(* Activity.putValue(..)) && args (..,..,ARGUMENT);
4

5 pointcut catchOutportData_sendOutput ():call(* Activity.sendOutput(..));
6

7 public static boolean put_OK = false;

Transformation rules from AO4AADL to AspectJ 9

8

9 void around (GeneratedTypes.IntegerType ARGUMENT): catchOutportData(ARGUMENT){
10

11 if ((OutPort)(thisJoinPoint.getArgs([1])).getPortNumber()==
12 Deployment.NODE_Customer_VALIDATION_PORT_OUT_K){
13 if (condition_1){
14 proceed(ARGUMENT);
15 put_OK = true;
16 ARGUMENT.value=ARGUMENT.value+1;
17 }
18 else{
19 //instructions_else
20 }}
21 else{ proceed(ARGUMENT);}}
22

23 void around ():catchOutportData_sendOutput (){
24

25 if ((OutPort)(thisJoinPoint.getArgs([1])).getPortNumber()==
26 Deployment.NODE_CUSTOMER_VALIDATION_PORT_OUT_K){
27 if (put_OK){
28 proceed();
29 }}
30 else{ proceed();}}

Listing 1.10. Code AspectJ gnr partir de l’exemple 1.9

– Joinpoint intercepting an input port
For the joinpoints which intercept an input port, we follow the same reaso-
ning made in the case of intercepting an output port. Actually, the study
of the methods of the Activity class has proofed that the interception of
an input port at architectural level returns to intercept, at implementation
level, two main methods which are : (1) the method public static void
storeReceivedMessage which enables the designer to know if there is
a new incoming message to the input port, and (2) public static void
getValue allowing to intercept the type and/or the value of the received
data.
As a result, three transformation rules are used to translate a joinpoint
intercepting an input port from AO4AADL to AspectJ.
– Joinpoint intercepting the event of receiving a message

Table 9 presents the rule applied in the the case of intercepting the event
of receiving a message.

Table9. Transformation rule of a joinpoint intercepting an input port

AO4AADL
specification

call/execution inport (<Input Port Identifier> (..))

Generated
AspectJ code

call/execution (* Activity.storeReceivedMessage(..))

Listing 1.11 shows an AO4AADL joinpoint intercepting the event of
receiving a data on an input port called Port in. The corresponding
AspectJ code is presented in Listing 1.12.

10

1 pointcut catchInport():call inport (Port_in(..));

Listing 1.11. Transformation d’un joinpoint interceptant un port d’entre

1 pointcut catchInport():call (* Activity.storeReceivedMessage(..));

Listing 1.12. Transformation d’un joinpoint interceptant un port d’entre

– Joinpoint intercepting the type and/or the value of the received data
In this case, two transformation rules are defined. Table 10 specifies
the rule used to intercept the type of the incoming data while the rule
presented in Table 11 is used when intercepting the value of the incoming
data.

Table10. Transformation rule of a joinpoint intercepting the type of the incoming data
to an input port

AO4AADL
specification

call/execution inport (<Input Port Identifier>
(<Data Type>))

Generated
AspectJ code

call/execution (* Activity.getValue(.., ..,
GeneratedTypes.<Data Type>))

The types of the first and the second arguments of the method put-
Value() are not specified for the same reasons as in the case of output
ports.

Table11. Transformation rule of a joinpoint intercepting the value of the incoming
data to an input port

AO4AADL
specification

call/execution inport (<Input Port Identifier>(..)) &&
args (<Data Identifier>)

Generated
AspectJ code

call/execution (* Activity.getValue(..)) && args (.., ..,
<DATA IDENTIFIER>)

The first two arguments of the args primitive are not specified for the
same reasons as in the case of output ports.
The combination of the two last rules leads to the interception of both
the type and the value of the incoming data.

Listing 1.13 presents an AO4AADL joinpoint intercepting the type and the
value of the received data on an input port. The corresponding AspectJ
code is presented in Listing 1.14.

1

2 pointcut catchInportTypeData(argument: Integer_Type):

Transformation rules from AO4AADL to AspectJ 11

3 call inport (Port_in(Integer_Type)) && args (argument);

Listing 1.13. Transformation d’un joinpoint interceptant un port d’entre

1

2 pointcut catchInportTypeData (GeneratedTypes.IntegerType ARGUMENT):
3 call(* Activity.getValue(..,..,GeneratedTypes.IntegerType))
4 && args(..,..,ARGUMENT);

Listing 1.14. Transformation d’un joinpoint interceptant un port d’entre

As we mentioned in the case of intercepting an output port, the generated
advice should be inserted under a condition that verifies the port’s identi-
fier. Therefore, the generated advice code has the following structure :
– For a before or after advice

– when intercepting the event of receiving a data

if ((InPort)(thisJoinPoint.getArgs([0]))).getPortNumber()==
Deployment.<In_PORT_ID>){
//Generated advice action code
}

– when intercepting the type and/or the value of the received data

if ((InPort)(thisJoinPoint.getArgs([1]))).getPortNumber()==
Deployment.<In_PORT_ID>){
//Generated advice action code
}

The difference here between these two cases consists in the position of
the InPort parameter in the intercepted method. For the public sta-
tic void storeReceivedMessage (InPort inPort , Message msg
, long timeStamp), this parameter takes the position 0 ; while for the
public static void getValue (int entity, InPort inPort, Genera-
tedType destination) the InPort parameter takes the position 1.

– For an around advice
– when intercepting the event of receiving a data

if ((InPort) (thisJoinPoint.getArgs([0]))).getPortNumber()==
Deployment.<In_PORT_ID>) {
//Generated advice action code
}
else{

proceed(<PARAMETER_PROFILE>);
}

– when intercepting the type and/or the value of the received data

if ((InPort) (thisJoinPoint.getArgs([1]))).getPortNumber()==
Deployment.<In_PORT_ID>) {
//Generated advice action code
}
else{

proceed(<PARAMETER_PROFILE>);
}

If the identifier of the port is not specified in the joinpoint specified in
the AO4AADL code (we use the wildcard ‘*’), this condition will not be
generated since this aspect is applied to every input port.

12

9 Transformation rules of the advice

We present in this part the transformation rules used to translate the ins-
tructions used in the advice subclause from AO4AADL to AspectJ.

9.1 Transformation rules of the advice declaration and the pointcut
reference

For the generated advice declaration and the pointcut reference parts, they
keep the same structure used in AO4AADL. We have only omitted the keyword
‘advice ’ and applied the transformation rules defined by the RTSJ generator to
translate the declared parameters.

Concerning the variables and the initially parts, they will be combined
in the generated AspectJ code. For each variable declared in the variables
subclause, the transformation rule presented in Table 12 is applied.

Table12. Transformation rule of a variable declared in the variables subclause

AO4AADL
specification

<Variable Identifier> : <Variable Type> ;

Generated
AspectJ code

public static final GeneratedTypes.<Variable Type>
<VARIABLE IDENTIFIER> = new Generated-
Types.<Variable Type>(<Variable Value>) ;

where <Variable Value> corresponds to the initial value of the variable de-
fined in the initially subclause. If this variable is not initialized then a default
value is attributed depending on the type of the variable. For example, the de-
fault value of an integer type is 0. Listing 1.15 presents the generated AspectJ
code for a declared and initialized integer variable. Listing 1.16 shows the gene-
rated code for a declared and not initialized integer variable.

//AO4AADL specification
variables { counter : Integer_Type; }
initially { counter := 1; }

//Generated AspectJ code
public static final GeneratedTypes.IntegerType COUNTER =
new GeneratedTypes.IntegerType (1);

Listing 1.15. Generated AspectJ code for a declared and initialized integer
variable

//AO4AADL specification
variables { counter : Integer_Type; }

//Generated AspectJ code
public static final GeneratedTypes.IntegerType COUNTER =
new GeneratedTypes.IntegerType (0);

Transformation rules from AO4AADL to AspectJ 13

Listing 1.16. Generated AspectJ code for a declared and not initialized integer
variable

9.2 Transformation rules of the action subclause

What about the action subclause, we present the main defined transformation
rules to obtain an AspectJ code from an AO4AADL specification.

Transformation of identifiers In this subclause, the identifiers of the variables
and parameters are translated according to the transformation rule presented in
Table 13.

Table13. Transformation rule of the identifiers of variables and parameters used in
the action subclause

AO4AADL
specification

<Variable or Parameter Identifier>

Generated
AspectJ code

<VARIABLE OR PARAMETER IDENTIFIER>.value

This rule is applied for all the identifiers except those used in the commu-
nication and the proceed() actions. In this case, the generated identifiers have
the following structure : <VARIABLE OR PARAMETER IDENTIFIER>.

Transformation des constants Constants used in AO4AADL are the numerical
values, the number of messages in the queue for an entry port and the boolean
values.

For the numerical and the boolean values, they are kept without modification.
For the second type of constant, the transformation rule is presented in table 14 :

Table14. Transformation rule of the number of messages in the queue for an entry
port

AO4AADL
specification

<Input Port Identifier>’count

Generated
AspectJ code

Activity.getCount(Deployment.<THREAD ID>, Acti-
vity.<INPUT PORT IDENTIFIER>)

14

Transformation of the assignment operation In AO4AADL, the structure of the
assignment operation is :

<Variable_or_Parameter_Identifier> := <Expression> ;

In AspectJ, this structure is kept as it is replacing the assignment sign (:=)
by the equal sign (=) while respecting the rules of transformation is presented
in table 15 :

Table15. Transformation rule of the number of messages in the queue for an entry
port

AO4AADL
specification

<Variable or Parameter Identifier> := <Expression> ;

Generated
AspectJ code

<VARIABLE OR PARAMETER IDENTIFIER>.value =
<Generated Expression> ;

Transformation of conditions Conditions used in AO4AADL are projected in
AspectJ keeping the same structure and respecting the transformation rules
presented in table 16 :

Table16. Transformation rules of the operators

AO4AADL AspectJ

or ||
and &&

not !

= ==

> >

≥ ≥
< <

≤ ≤
!= !=

Transformation of the arithmetic operators Arithmetic operations used in AO4AADL
are mapped into AspectJ without modification. Arithmetic operation has always
the following structure :

<Left_Expression> <operator> <Right_Expression>

where <operator> belongs to the following set of operators : {*, /, +, -}

Transformation rules from AO4AADL to AspectJ 15

Transformation of the communication operations For the communication actions
presented in lines 28–30 of Listing 1.19, we followed the transformation rules used
by the RTSJ generator.

In AO4AADL, communication operations can be summarized in three main
operations namely (1) the execution of a subprogram (2) reading data from
an input port and (3) writing data on an output port. The structures of these
various operations are respectively :

1. <Required Subprogram Identifier> ! (<Parameter Profile>)

2. <Input Port Identifier> ? (<Data Identifier>)

3. <Output Port Identifier> ! (<Data Identifier>)

According to this generator, for a given node, the generated Subprograms
class includes only the subprograms called by a thread forming this node. Unfor-
tunately, a subprogram can be used inside the advice action without being called
by any thread. Our idea is then to extend this class by generating, for each node,
the methods that correspond to the called subprograms in the AO4AADL as-
pects. Therefore, calling a subprogram inside the advice action in the AO4AADL
specification returns to call the corresponding method in the Subprograms class
for the generated AspectJ code.

Transformation rules applied to the three types of the communication ope-
rations are presented in tables 17, 18 and 19 respectively :

Table17. Transformation rule of the number of messages in the queue for an entry
port

AO4AADL
specification

<Required Subprogram Identifier> ! (<Parameter Profile>)

Generated
AspectJ code

SubPrograms.<Required Subprogram Identifier>Impl
(PARAMETER PROFILE)

According to the RTSJ generator, the operation of receiving a message by an
input port is translated into two other methods from the Activity class which
are : (1) the getValue() method which enables to get the data on the port and
(2) the nextValue() method to dequeue one entry from the input port’s queue.

Table 19 presents the transformation rule of the operation of sending a mes-
sage through an output port.

As shown in Table 19, this operation is translated into two methods : (1)
the putValue() method which enables to put the data on the port and (2) the
sendOutput() method to send the data to the corresponding destination.

Transformation of the proceed operations Concerning the proceed() action, it
keeps the same structure presented in AO4AADL respecting the transformation
rules applied to the identifiers.

Transformations of conditions and loops

16

Table18. Transformation rule of the operation of receiving a message by an input port

AO4AADL
specification

<Input Port Identifier> ? (<Data Identifier>)

Generated
AspectJ code

try {
Activity.getValue (Deploymet.<THREAD ID>,
Activity.<INPUT PORT IDENTIFIER>,
<DATA IDENTIFIER>) ;
}
catch (ProgramException e) {
Debug.debugMessage (”error while per-
forming get value in port” + Deploy-
ment.<INPUT PORT IDENTIFIER>.getPortNumber ()
+ ”from thread” + Deployment.<THREAD ID>) ;
throw e ;
}
try {
Activity.nextValue (Deploymet.<THREAD ID>, Acti-
vity.<INPUT PORT IDENTIFIER>) ;
}
catch (ProgramException e) {
Debug.debugMessage (”Error while per-
forming next value in port” + Deploy-
ment.<INPUT PORT IDENTIFIER>.getPortNumber ()+
”from thread” + Deployment.<THREAD ID>) ;
throw e ;
}

Transformation rules from AO4AADL to AspectJ 17

Table19. Transformation rule of the operation of sending a message through an output
port

AO4AADL
specification

<Output Port Identifier> ! (<Data Identifier>)

Generated
AspectJ code

try {
Activity.putValue (Deploymet.<THREAD ID>,
Activity.<OUTPUT PORT IDENTIFIER>,
<DATA IDENTIFIER>) ;
}
catch (ProgramException e) {
Debug.debugMessage (”error while putting value in port” + De-
ployment.<OUTPUT PORT IDENTIFIER>.getPortNumber
() + ”from entity” + Deployment.<THREAD ID>) ;
throw e ;
}
try {
Activity.sendOutput (Deploymet.<THREAD ID>, Acti-
vity.<OUTPUT PORT IDENTIFIER>) ;
}
catch (ProgramException e) {
Debug.debugMessage (”Error while sen-
ding output in port” + Deploy-
ment.<OUTPUT PORT IDENTIFIER>.getPortNumber
()+ ”from entity” + Deployment.<THREAD ID>) ;
throw e ;
}

18

Transformation of if conditions In AspcetJ, the if condition keeps the same
structure used in AO4AADL while respecting the transformation rules presented
above.

Transformation of the while loop The while loop keeps the same structure used
in AO4AADL while respecting the transformation rules presented above.

Transformation of the for loop The transformation of the for loop from AO4AADL
to AspectJ is performed according to the rule presented in table 20 :

Table20. Transformation rule of the for loop

AO4AADL
specification

for (<Loop Variable Identifier> in <Integer Range>)

Generated
AspectJ code

for (<LOOP VARIABLE IDENTIFIER>.value =
<Min Value> ; <LOOP VARIABLE IDENTIFIER>.value <
<Max Value> ; <LOOP VARIABLE IDENTIFIER>.value++)

where <Integer Range> is the interval in which varies the loop counter
(<loop variable identifier>). It has always the following form :

Integer_Range ::= Min_Value.. Max_Value

For the for loop in AO4AADL, we specify the identifier of the counter
<Loop Variable Identifier> and the interval in which varies the counter <Integer Range>.
When transforming the for loop to the AspectJ language, the part between bra-
ckets will be divided into three parts :

1. initialization : The loop counter is initialized to the minimum value of the
specified interval.

2. condition : Boolean expression that controls the passages in the loop that
are as long as it is true. This expression is generally of the form : counter ¡
maximum value of the specified interval.

3. transition : instruction executed before each new pass through the loop. It
increments the counter by 1.

Listing 1.17 presents a complete example of AO4AADL aspect. Listing 1.18
presents the generated AspectJ code.

1 aspect CheckCode{
2 pointcut Verification(): call outport (Restore_Code_out_V (..));
3

4 advice around():Verification(){
5

6 variables { counter : Integer_Type; message : String_Type }
7 initially { counter:=1; message:= "Card Rejected !"; }
8

9 if(counter=3){
10 Rejected_Card_out_V!(message);
11 counter := 1;
12 }

Transformation rules from AO4AADL to AspectJ 19

13 else{
14 proceed();
15 counter := counter;
16 } }}

Listing 1.17. Complete example of AO4AADL aspect

1 //List of import instructions generated in every AspectJ file
2 import fr.enst.ocarina.polyORB_HI_runtime.OutPort;
3 import fr.enst.ocarina.polyORB_HI_runtime.InPort;
4 import fr.enst.ocarina.polyORB_HI_runtime.ProgramException;
5 import fr.enst.ocarina.polyORB_HI_runtime.Debug;
6 import fr.enst.ocarina.polyORB_HI_runtime.Message;
7

8 aspect CheckCode{
9 //The generated AspectJ pointcut

10 //In our case, we intercept the event of sending a data through an output port
11 pointcut Verification(): call (* Activity.sendOutput (..));
12

13 //The variables generated from the variables and initially sections
14 public static final GeneratedTypes.IntegerType COUNTER =
15 new GeneratedTypes.IntegerType(1);
16

17 public static final GeneratedTypes.StringType MESSAGE =
18 new GeneratedTypes.StringType("Card Rejected !");
19 //The generated Advice code
20 void around():Verification(){ //Advice declaration
21

22 //The condition that checks the intercepted port
23 //In our case the identification number of the output port is
24 //NODE_CUSTOMER_VALIDATION_RESTORECODE_OUT_K
25 if (((OutPort)(thisJoinPoint.getArgs()[1])).getPortNumber()==
26 Deployment.NODE_CUSTOMER_VALIDATION_RESTORECODE_OUT_K){
27

28 //The generated advice action part
29 if(COUNTER.value==3){
30 // Set the call sequence OUT port values
31 try {
32 Activity.putValue(Deployment.NODE_CUSTOMER_VALIDATION_K,
33 Activity.REJECTEDCARD_OUT_V, MESSAGE);
34 }
35 catch (ProgramException e) {
36 Debug.debugMessage("Error while putting value in port "
37 +Deployment.NODE_CUSTOMER_VALIDATION_REJECTEDCARD_OUT_K
38 + " from entity " + Deployment.NODE_CUstomer_VALIDATION_K);
39 }
40 // Send the call sequence OUT port values
41 try {
42 Activity.sendOutput(Deployment.NODE_CUSTOMER_VALIDATION_K,
43 Activity.REJECTEDCARD_OUT_V);}
44 catch (ProgramException e) {
45 Debug.debugMessage("Error while sending output in port "
46 + Deployment.NODE_CUSTOMER_VALIDATION_REJECTEDCARD_OUT_K
47 + " from entity " + Deployment.NODE_CUSTOMER_VALIDATION_K);}
48 COUNTER.value=1;
49 }
50 else{
51 //The proceed action
52 proceed();
53

54 //The generated code from the assignment action
55 //In this case, the operator ":=" used in AO4AADL is transformed
56 //to the operator "="
57 //For the arithmetic operations, no changes are applied to
58 //the operators {*, /, +, -}
59 COUNTER.value=COUNTER.value+1;

20

60 }}
61 //This code will be executed if the intercepted port is not RestoreCode_Out_V.
62 else{proceed();}}}

Listing 1.18. Generated AspectJ code from listing 1.17

In Listing 1.18, lines 2–6 shows the list of the imported files that should be
present in every generated AspectJ file. Line 11 corresponds to the generated
pointcut. Lines 14–18 presents the list of the generated local variables. The ge-
nerated advice code is presented in lines 20–62.

Notes : In order to have a valid code, the following imports must be added
to each generated aspect :

import fr.enst.ocarina.polyORB_HI_runtime.OutPort;
import fr.enst.ocarina.polyORB_HI_runtime.InPort;
import fr.enst.ocarina.polyORB_HI_runtime.ProgramException;
import fr.enst.ocarina.polyORB_HI_runtime.Debug;
import fr.enst.ocarina.polyORB_HI_runtime.Message;

The transformation rules presented here are applicable to aspects that are
reported as an annex in a thread or a subprogram. In the case where the aspect
affects several architectural components, it is declared in an external package vi-
sible to all the system. The transformation rules presented here remain valid ; we
have just to generate this aspect for each node of the application while applying
the following rules :

– If the aspect uses a subprogram, it will be generated in all Subprograms
classes of all nodes of the application. If the Subprograms class already
contains the corresponding method to this subprogram then the generation
will be ignored for this class.

– For the code of the advice and in the case of the interception of ports,
we have simply to combine the condition of checking the identifier of the
port generated in the case of an aspect applied to a single thread with
the conditions of verification of the identifiers of the treads intercepted in
a node with a logical operator (&&). These conditions are separate by a
logical operator (&&). Identifiers are deduced easily from the list of the
specified components in section applies to of the aspect and using the De-
ployment class. The conditions of verifying identifiers of the intercepted
threads are generated using the following rules. :
– If we intercept the event of receiving a message on an input port, the

generated verification condition has the following form :

(Message)(thisJoinPoint.getArgs([1])).getmydestination()==
Deployment.<THREAD_ID>

– For all other cases, the generated verification condition has the following
form :

(int)(thisJoinPoint.getArgs([0]))== Deployment.<THREAD_ID>

Transformation rules from AO4AADL to AspectJ 21

Example : We suppose an application composed of two processes :
– A process called Node A composed of three threads TA1, TA2 and TA3.
– A process called Node B composed of two threads TB1 et TB2.
The snippet code 1.19 presents a complete example of AO4AADL aspect

declared in an external package.

1 aspect Logging {
2 applies to thread TA1, thread TA2, process Node_B;
3 pointcut count() : execution outport (* (..));
4 advice after (): count(){
5 variables{counter:Integer_Type;}
6 initially{counter:=1;}
7 counter:=counter+1;}}

Listing 1.19. Example of AO4AADL aspect affecting several components

Since the aspect intercepts the threads TA1 and TA2 of the process Node A and
all threads of the process Node B, then there will be generation of two aspects
for each process.

Listing 1.20 shows the AspectJ code generated for the process Node A and
listing 1.21 corresponds to the AspectJ code generated for the process Node B.

1 import fr.enst.ocarina.polyORB_HI_runtime.OutPort;
2 import fr.enst.ocarina.polyORB_HI_runtime.InPort;
3 import fr.enst.ocarina.polyORB_HI_runtime.ProgramException;
4 import fr.enst.ocarina.polyORB_HI_runtime.Debug;
5 import fr.enst.ocarina.polyORB_HI_runtime.Message;
6

7 aspect Logging {
8

9 pointcut count () : execution (* Activity.sendOutput (..));
10 public static final GeneratedTypes.IntegerType COUNTER =
11 new GeneratedTypes.IntegerType(1);
12 after ():count (){
13 if(((int)(thisJoinPoint.getArgs([0]))== Deployment.NODE_A_TA1_K)
14 || (((int)(thisJoinPoint.getArgs([0]))==
15 Deployment.NODE_A_TA2_K)){
16 COUNTER.value=COUNTER.value+1;}}}

Listing 1.20. Generated AspectJ code for Node A of the application

1 import fr.enst.ocarina.polyORB_HI_runtime.OutPort;
2 import fr.enst.ocarina.polyORB_HI_runtime.InPort;
3 import fr.enst.ocarina.polyORB_HI_runtime.ProgramException;
4 import fr.enst.ocarina.polyORB_HI_runtime.Debug;
5 import fr.enst.ocarina.polyORB_HI_runtime.Message;
6

7 aspect Logging {
8

9 pointcut count () : execution (* Activity.sendOutput (..));
10 public static final GeneratedTypes.IntegerType COUNTER =
11 new GeneratedTypes.IntegerType(1);
12 after ():count (){
13 if(((int)(thisJoinPoint.getArgs([0]))== Deployment.NODE_B_TB1_K)
14 || (((int)(thisJoinPoint.getArgs([0]))== Deployment.NODE_B_TB2_K)){
15 COUNTER.value=COUNTER.value+1;}}}

Listing 1.21. Generated AspectJ code for Node B of the application

22

10 Conclusion

we presented here one of our main contributions.It consists in the defini-
tion of a set of transformation rules that enables the designer to translate the
AO4AADL specification into AspectJ code.

These transformation rules are based on the RTSJ generator ones.
Actually, the transformation from AO4AADL to AspectJ is not so hard since

the syntax and semantics of our language is very close to the AspectJ ones.

