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1 Introduction

Strong mobility of an orchestration process corresponds to the migration of all or a subset of its running
instances from a host to another and their resumption, on the destination host, starting from their last
captured checkpoints. Strong mobility may occur in case of failure of the orchestration process hosting node
and it consists, in this case, in recovering all interrupted instances on a more reliable node. Strong mobility
may occur also in case of performance degradation of the hosting node which necessitates the migration of
only a subset of the running instances in order to handle the node overload.

Our Strong mobility solution relies mainly on source code transformation, AOP, and additional manage-
ment services like the Web Service Checkpoint Manager (WSCM) and the Web Service Invocation Manager
(WSIM).

Source code transformation enables the preparation and the maintenance of the orchestration process
state in order to allow checkpointing when required. Aspects ensure dynamic checkpointing, recovery, and
migration of any orchestration process belonging to a service oriented application even if its partners are
also orchestration processes. The additional management services ensure checkpoint availability and mobility
transparency.

In this technical report, we begin with presenting an overview on the architecture of our strong mobility
solution as well as the different involved entities. Then, we will detail the employed source code transfor-
mation rules and we will present the proof verifying that these latter preserve the semantics of the original
process.

2 Strong Mobility Architecture

The proposed architecture enabling strong mobility of orchestration processes is described in Figure 1. This
architecture includes two main management services respectively called Web Service Invocation Manager
(WSIM) and Web Service Checkpoint Manager (WSCM). It also includes four kinds of aspects: check-
pointing, results, mobility, and recovery aspects. In the following, we will detail the components of this
architecture as well as the used implementation platform.

2.1 The Web Service Invocation Manager (WSIM)

is a service deployed between the client and the main orchestration process1. It deals with routing messages
between the main orchestration process and its clients. This service is essential in case of main orchestration
process migration, since it ensures the routing of the response resulting from the new main orchestration
process host towards the initial client. In spite of this centralized architecture which makes all invocations
pass through the WSIM, the latter does not constitute a bottleneck. In fact, the WSIM does not make any
treatment apart from invoking the main orchestration process, waiting for its response, and routing it to the
client.

2.2 The Web Service Checkpoint Manager (WSCM)

is a service responsible for managing the checkpoints of the orchestration process instances as well as their
results. Indeed, when the checkpointing aspect is deployed, every concerned instance calls the WSCM,
through the checkpointing aspect code, for saving a copy of its execution state (checkpoint). Thus, the
WSCM saves all captured checkpoints on a remote database in order to enable their possible use for resuming
interrupted instances. Moreover, when an orchestration process reaches its end, the result aspect is executed
to save the returned result on the WSCM.

1We use the term ”main orchestration process” to refer to the BPEL process which is directly invoked by the client and not
invoked by an other BPEL process.
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Figure 1: Architecture supporting strong mobility of orchestration processes.

2.3 The checkpointing, result, mobility, and recovery aspects

are essential parts of the strong mobility architecture. In fact, they ensure the flexibility of this architecture
since aspects may be deployed and un-deployed according to the execution context. They encapsulate codes
enabling the enforcement of checkpointing and mobility. In particular, the result aspect is responsible of
saving the process result. While mobility aspect enforces process instances mobility, the recovery aspect
ensures execution resumption after mobility.
Finally, the checkpointing aspect is used to capture a checkpoint. For that, we suggest different aspects im-
plementing a variety of checkpointing techniques such as checkpointing at the next natural synchronization
barrier, forced checkpoint, immediate checkpoint and migration. Checkpointing at the natural synchroniza-
tion barrier corresponds to waiting until reaching a sequential execution (i.e. execution with no parallel
branches) to enact the checkpoint. In fact, at such position, capturing the checkpoint is simple and re-
quires only sending the current state to the WSCM after updating the activity counter. Contrary, forced
checkpointing involves synchronizing all parallel branches, before capturing the execution state. This will
guarantee a consistent checkpoint (see [2] for more details about synchronization). The checkpoint at mi-
gration is similar to the forced checkpointing scenario, but it additionally requires forcing the migration
by throwing a notification to the WSIM and stopping the orchestration process execution just after check-
point capture. These aspects will be deployed at runtime which makes it possible to dynamically select not
only the adequate time point to make the checkpoint but also the appropriate technique to enact it. Once
the checkpointing aspect is deployed, it saves the orchestration process execution state and sends it to the
WSCM. Technical details about our aspect-oriented solution may be found in [1].

2.4 The platform

enabling the deployment of such architecture necessitates an AO4BPEL engine deployed on each node hosting
an orchestration process. Moreover, for high availability, dedicated nodes should be used for hosting the
WSIM and the database. The WSCM may be deployed on the same node as the orchestration process or
on a different one. A unique WSCM may be employed for more than one orchestration process, but one
should take precaution to avoid the risk of its overload. For instance, in Figure 1, the WSIM is deployed
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on a dedicated host. For each BPEL process, we deploy a dedicated WSCM. Both BPEL process and its
corresponding WSCM are deployed on the same host.

3 Source Code Transformation Rules

Source code transformation rules aim to maintain up to date the execution state of a BPEL instance, in order
to enable its capture at any point of its execution. For that, the first step of source code transformation
consists in adding a set of variables representing the BPEL instance execution state. The second step
corresponds to the application of a set of source code transformation rules in order to maintain up to date
these variables.

In the next sections, we will detail the structure of the execution state of a BPEL instance. Then, we will
present the employed source code transformation rules. Here, we distinguish transformation rules targeting
generic algorithmic structures and specific transformation rules which focus on BPEL specific activities.

3.1 Definition of an orchestration process state

The state of an orchestration process corresponds to a set of data describing its execution progress and which
is sufficient for resuming the orchestration process execution in case of interruption.

1 <!−Instance ident i f ier −−>
<variable name=”OPIdentifier” type=”xsd:int”/>

3 <!−Or ig ina l p roce s s v a r i a b l e s −−>
<va r i ab l e name=”getResponse ” type=” x sd : S t r i n g ”/>

5 <va r i ab l e name=”sendPO” type=” x sd : S t r i n g ”/>
<va r i ab l e name=” getConf i rmat ion ” type=” x sd : S t r i n g ”/>

7 <!−Activity counter variables −−>
<variable name=”Pos1” type=”xsd:int”/>

9 <variable name=”Pos2” type=”xsd:int”/>
<!−Reception management variables −−>

11 <variable name=”received1” type=”xsd:int”/>
<!−Links variables −−>

13 <variable name=”link1” type=”xsd:int”/>
<variable name=”link2” type=”xsd:int”/>

15 <!−Scope variables −−>
<variable name=”getResponseCompensation” type=”xsd:String”/>

17 <!−Checkpoint and mobility management variables −−>
<variable name=”CheckpointIndicator” type=”xsd:int”/>

19 <variable name=”NbBranches” type=”xsd:int”/>
<variable name=”NbSynch” type=”xsd:int”/>

Figure 2: Variables for checkpoint data of a BPEL process

Those data will be saved in variables belonging to the transformed orchestration process. They include
the original process variables as well as additional variables helping consistency and mobility management.
These additional variables, written in bold in Figure 2, are: (1) the orchestration process instance identifier
defining for which instance the checkpoint belongs, (2) the artificial activity counters which point to the actual
running activities2, (3) the reception management variables which ensure re-calling invocations for which no
reply is received before migration, (4) links variables which ensure the preservation of the execution order
of activities when links are employed, (5) scope variables which are responsible of compensation and fault
handlers, and finally, (6) checkpoint and mobility management variables handling checkpoint capture and
mobility launching. All these variables represent the checkpoint data of an orchestration process instance.

2Note that there are as many activity counters as branches (the number of activity counters is equal to the maximal number
of parallel branches)
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These variables are perpetually updated in order to maintain the execution state of the orchestration process
instance up to date. For that, we define a set of rules that transform the process code by inserting instructions
for updating these checkpoint variables. We distinguish specific rules for the basic activities (invoke, receive,
assign, wait ...) and others for the structured activities (while, switch ...).

In the next subsection, we will detail how orchestration process state is prepared and maintained using
source code transformation rules. In addition, we will present the proof verifying the correctness of these
transformation rules.

3.2 Generic Source code transformation rules

Ensuring strong mobility of an orchestration process consists in integrating the capacity to capture its
execution state (checkpoint), as well as the possibility of loading a checkpoint (re-establish) in order to
resume the execution starting from it. In our approach, these functionalities are carried out based on
aspects and pieces of code inserted into the orchestration process source code. Indeed, the code of the
process is automatically instrumented in order to maintain perpetually an updated state of each running
instance. Thus, aspects may be deployed at any execution time in order to capture this state, recover it,
or launch instance mobility. In this section, we will present source code transformation rule which target
common algorithmic structures such as conditional and loop structures.

In the following, we present our transformation rules for BPEL version 1.1 since we will deploy it on the
AO4BPEL engine. However, they can also be applied for any orchestration process description language.

3.2.1 Simple instructions
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Figure 3: Transformation rule of basic activities.

The transformation rule for a block of basic activities labels these activities with a counter (see Figure
3). It consists in (1) updating the activity counter to the position of the next activity to be carried out and
(2) testing if the current activity corresponds to the one which should be carried out. Thus, this rule will
be applied to the invoke, receive, reply, wait, and assign activities. In this way, the transformed process will
execute this block only if the current position is equal to its label. This will ensure that this block will not
be re-executed after migration.
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Figure 4: Transformation rule of an if-else structure.

3.2.2 Conditional structures

Figure 4 presents the transformation rule of an if-else structure. This transformation ensure that the if block
is executed if both the activity counter pos corresponds to the first position of the conditional structure
pos(cond) and the condition is satisfied. Also, in case of interruption and when the last captured checkpoint
was done during the execution of the if block, the execution of this latter after resumption necessitates that
the current position is between the first position of the if block min(if) and the last position of the if block
max(if). After the execution of the if block, the activity counter will point to the instruction located after
the else block max(else) + 1. if the entry condition of the if block is not satisfied, the activity counter
will point to the first position in the else block min(else). The else block will be executed if the activity
counter is located between the first position of the else block min(else) and the last position of the else
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block max(else). Thus, if the last captured checkpoint occurred during the execution of the else block, the
resumption will be correctly done starting from the interruption point.

3.2.3 Loops structures

Figure 5 presents the transformation rule of the while structure. This rule guarantees that the access to
the while structure is made only if the activity counter value corresponds to one of the position of activities
located within the loop. Moreover, this transformation ensures that at the loop end, the activity counter
value corresponds to the position of the next activity. Analogously, we defined the transformation rules for
the RepeatUntil structure.
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Figure 5: Transformation rule of a loop structure.

3.3 Specific Source code transformation rules

In this section, we will present specific transformation rules which corresponds to BPEL specific activities.
We will focus on flow activity.
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Figure 6: Transformation rule of a flow structure.

Flow structure enables the parallel execution of BPEL activities. The main transformation of this
structure consists in updating the nbBranch variable which counts the current number of parallel branch.
This value should be available at checkpointing time in order to manage the synchronization process (see [2]
for more details).

As presented in Figure 6, the nbBranch value is updated by adding 1 at the flow structure beginning.
Thereby, the number of parallel branches pass from 1 to 2. Moreover, it is decremented when a branch is
terminated. So, at the end of the flow structure, the number of parallel branches becomes 0. Therefore,
after the flow structure, the nbBranch value is incremented to become 1.

Making code transformation arises the need of ensuring that this latter preserves the semantics of initial
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processes. For that, we present, in the next section, the proof verifying that the transformed process resulting
from applying our source code transformation rules preserves the semantics of the original one.

4 Proof of correctness of Generic Source Code transformation
rules

In order to prove that the original and the transformed codes have the same semantics, we make use of the
Hoare logic []. Hence, we prove that when the original and transformed codes have the same pre-condition,
the transformed code conserves the post-condition of the original one. In this proof, we consider that the
original code may be written as follows:

P = P (j0, j1 − 1); P (j1, j2 − 1); ...P (ji, ji+1 − 1); ...P (jn, jn+1 − 1)
Where

• P (ji, ji+1 − 1) simple instruction or complex structure having ji+1 − ji as number of instructions

• j0 = 0

• {Q0} P {Qjn+1}
• ∀i ∈ {0, ..., n} {Qji} P (ji, ji+1 − 1) {Qji+1}

We consider also that the transformed code corresponds to:
Trans(P ) = PRecovery; Trans(P (j0, j1 − 1)); ...; Trans(P (jn, jn+1 − 1))
Where

P Recovery : i f ( migrat ion ) then { pos = j m ; Q 0 = Qj m ;}
2 else pos = 0 ;

Qjm is the last saved post-condition before migration and jm is the position of the next instruction to be
executed after migration. Given these definitions, we should prove that {Q0} Trans(P ) {Qjn+1 ∧ pos =
jn+1}.

Our proof will be made in two steps: (1) the code is executed without any migration: migration = false,
and (2) the code execution corresponds to a resumption after migration: migration = true.

4.1 Step 1: migration = false

In this case, we have : {Q0} PRecovery {Q0 ∧ pos = 0}. So, we have to prove that :
∀i ∈ {0, ..., n}{Qji ∧ pos = ji} Trans(P (ji, ji+1 − 1)) {Qji+1 ∧ pos = ji+1}
However, the result of the Trans function depends on the structure of the original code. Therefore, a

proof by structured induction will be performed. We start with simple instructions, then we make it for
structured ones.

4.1.1 Case of Simple Instructions

We note the set of simple instructions S. For each I in S we have:

Trans ( I ) : i f ( pos = k) then { I ; pos = pos+1;}

Since instructions belonging to S are simple, we have ∀i ∈ {0, ..., n}ji = i and so{Qi} P (i, i + 1)) {Qi+1}.
That is, in order to achieve the proof for instructions belonging to S, we should prove that:

∀i ∈ {0, ..., n} {Qi ∧ pos = i} Trans(P (i, i + 1)) {Qi+1 ∧ pos = i + 1}

9



(A)

{Qi ∧ pos = i ∧ pos = i}P (i, i + 1); pos = pos + 1; {Qi+1 ∧ pos = i + 1}
false → Qi+1 ∧ pos = i + 1

Qi ∧ pos = i ∧ ¬pos = i → Qi+1 ∧ pos = i + 1

{Qi ∧ pos = i}if(pos = i)then{P (i, i + 1); pos = pos + 1; }{Qi+1 ∧ pos = i + 1}
{Qi ∧ pos = i}Trans(P (i, i + 1)){Qi+1 ∧ pos = i + 1}

{Qi}P (i, i + 1){Qi+1} Qi ∧ pos = i → Qi Qi+1 ∧ pos = i → Qi+1

{Qi ∧ pos = i}P (i, i + 1){Qi+1 ∧ pos = i}
{pos = i}pos = pos + 1{pos = i + 1}

{Qi+1¬pos = i}pos = pos + 1{Qi+1¬pos = i + 1}
(A)

This enables us to state the following results.

Result 1 :
∀i ∈ {0, ..., n} and P (i, i + 1) ∈ S,
{Qi} P (i, i + 1) {Qi+1} ⇒ {Qi ∧ pos = i} Trans(P (i, i + 1)) {Qi+1 ∧ pos = i + 1}

Result 2 :
For any code P composed of instructions belonging to S:
{Q0} P {Qjn+1} ⇒ {Q0 ∧migration = false} Trans(P ) {Qjn+1 ∧ pos = jn+1}

Proof of Result2 Using structural induction:

• For i = 0, we have P0 = P (0, 1) with {Q0}P (0, 0){Q1}. So, Trans(P0) = PRecovery; Trans(P (0, 0)). Moreover, we have
{Q0 ∧migration = false}PRecovery{Q0 ∧pos = 0} and according to Result1, {Q0 ∧pos = 0}Trans(P (0, 0)){Q1 ∧pos =
1}. Thus, we can conclude that {Q0 ∧migration = false}Trans(P0){Q1 ∧ pos = 1}.

• Assume that {Q0 ∧ migration = false}Trans(P (0, n)){Qn+1 ∧ pos = n + 1}, let us prove that {Q0 ∧ migration =
false}Trans(P (0, n + 1)){Qn+2 ∧ pos = n + 2}.
As Trans(P (0, n+1)) = Trans(P (0, n)); Trans(P (n+1, n+1)); and {Qn+1∧pos = n+1}Trans(P (n+1, n+1)){Qn+2∧
pos = n + 2}, we can deduce that {Q0 ∧migration = false}Trans(P (0, n + 1)){Qn+2 ∧ pos = n + 2}

4.1.2 Case of Conditional structures

A conditional structure P (ji, ji+1 − 1) may be written as follows:

1 i f ( cond ) then P( j { i +1} ,k ) ; else P(k+1, j { i +1}−1) ;

The transformation Trans(P (ji, ji+1 − 1) of this program corresponds to:

1 i f ( ( pos = j i and cond ) or ( pos > j i and pos <= k) ) then {
i f ( pos = j i ) then pos = j { i +1};

3 Trans (P( j { i +1} ,k ) ) ;
i f ( pos = k+1) then pos = j { i +1}

5 } else i f ( pos = j i ) then pos=k+1;

7 i f ( pos > k and pos < j { i +1}) then
Trans (P(k+1, j { i +1}−1)) ;

We have :

• {Qji} P (ji, ji+1 − 1) {Qji+1},
• {Qji} P (ji+1, k) {Qji+1}, and

• {Qji} P (k + 1, ji+1 − 1) {Qji+1}
And we should prove that : {Qji ∧ pos = ji} Trans(P (ji, ji+1 − 1)) {Qji+1 ∧ pos = ji+1}
For that, we should prove that:
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• (i) {Qji ∧ pos = ji ∧ cond} Trans(P (ji, ji+1 − 1)) {Qji+1 ∧ pos = ji+1}
• (ii) {Qji ∧ pos = ji ∧ ¬cond} Trans(P (ji, ji+1 − 1)) {Qji+1 ∧ pos = ji+1}

(i) Let us prove that {Qji ∧ pos = ji ∧ cond} Trans(P (ji, ji+1 − 1)) {Qji+1 ∧ pos = ji+1}
(A) (B)

{Qji ∧ pos = ji ∧ cond}blocIf{Qji+1 ∧ pos = ji+1}
(F )

{Qji+1 ∧ pos = ji+1}BlocElse{Qji+1 ∧ pos = ji+1}
{Qji ∧ pos = ji ∧ cond}Trans(P (ji, ji+1 − 1)){Qji+1 ∧ pos = ji+1}

Qji ∧ pos = ji ∧ cond ∧ ((pos = ji ∧ cond) ∨ (pos > ji ∧ pos <= k)) → Qji ∧ pos = ji ∧ cond (Y )

{Qji ∧ pos = ji ∧ cond ∧ ((pos = ji ∧ cond) ∨ (pos > ji ∧ pos <= k))}(X1){Qji+1 ∧ pos = ji+1}
(A)

Where (X1): if (pos = ji) then pos = ji+1; Trans(P (ji+1, k)); if (pos = k + 1) then pos = ji+1

(C) (D) (E)

{Qi ∧ pos = ji ∧ cond}if (pos = ji) then pos = ji+1; Trans(P (ji+1, k)); if (pos = k + 1) then pos = ji+1{Qi+1 ∧ pos = ji+1}
(Y )

(X2) (X3) (X4)

{Qji ∧ pos = ji ∧ cond}pos = ji+1{Qji ∧ pos = ji+1}
{Qji ∧ pos = ji ∧ cond ∧ pos = ji}pos = ji+1{Qji ∧ pos = ji+1}

false → Qji ∧ pos = ji+1

Qji ∧ pos = ji ∧ cond ∧ ¬pos = ji → Qji ∧ pos = ji+1

{Qji ∧ pos = ji ∧ cond}if(pos = ji)thenpos = ji+1{Qji ∧ pos = ji+1}
(C)

Where: (X2) = {pos = ji}pos = ji+1{pos = ji+1}, (X3) = Qji ∧ pos = ji ∧ cond → pos = ji, and (X4) = Qji ∧ pos =
ji+1 → pos = ji+1.

{Qji ∧ pos = ji + 1}Trans(P (ji + 1, k)){Qji+1 ∧ pos = k + 1}
(D)

(Already proved for P (ji + 1, k) ∈ S)

{pos = k + 1}pos = ji+1{pos = ji+1}
{Qji+1 ∧ pos = k + 1}pos = ji+1{Qji+1 ∧ pos = ji+1}

{Qji+1 ∧ pos = k + 1 ∧ pos = k + 1}pos = ji+1{Qji+1 ∧ pos = ji+1}
false → Qji+1 ∧ pos = ji+1

Qji+1 ∧ pos = k + 1 ∧ ¬pos = k + 1 → Qji+1 ∧ pos = ji+1

{Qji+1 ∧ pos = k + 1} if (pos = k + 1) then pos = ji+1{Qji+1 ∧ pos = ji+1}
(E)

{false}Trans(P (k + 1, ji+1 − 1)){Qji+1 ∧ pos = ji+1}
{Qji+1 ∧ pos = ji+1 ∧ pos >= k ∧ pos < ji+1}Trans(P (k + 1, ji+1 − 1)){Qji+1 ∧ pos = ji+1} (G)

{Qji+1 ∧ pos = ji+1}if (pos >= k ∧ pos < ji+1) then Trans(P (k + 1, ji+1 − 1)){Qji+1 ∧ pos = ji+1}
(F )

pos = ji+1 ∧ (¬pos >= k ∨ ¬pos < ji+1) → pos = ji+1

Qji+1 ∧ pos = ji+1 ∧ (¬pos >= k ∨ ¬pos < ji+1) → Qji+1 ∧ pos = ji+1

Qji+1 ∧ pos = ji+1 ∧ ¬(pos >= k ∧ pos < ji+1) → Qji+1 ∧ pos = ji+1

(G)

{false} if (pos = ji)pos = k + 1; {Qji+1 ∧ pos = ji+1} (pos = ji ∧ cond) ∧ ¬(pos = ji ∧ cond) → false

{Qji ∧ (pos = ji ∧ cond) ∧ ¬(pos = ji ∧ cond) ∧ ¬(pos > ji ∧ pos <= k)} if (pos = ji) then pos = k + 1; {Qji+1 ∧ pos = ji+1}
{Qji ∧ pos = ji ∧ cond ∧ ¬((pos = ji ∧ cond) ∨ (pos > ji ∧ pos <= k))} if (pos = ji) then pos = k + 1; {Qji+1 ∧ pos = ji+1}

B

(ii) Let us prove that {Qji ∧ pos = ji ∧ ¬cond} Trans(P (ji, ji+1 − 1)) {Qji+1 ∧ pos = ji+1}
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(A) (B)

{Qji ∧ pos = ji ∧ ¬cond}blocIf{Qji ∧ pos = k + 1}
(C)

{Qji ∧ pos = k + 1}BlocElse{Qji+1 ∧ pos = ji+1}
{Qji ∧ pos = ji ∧ ¬cond}Trans(P (ji, ji+1 − 1)){Qji+1 ∧ pos = ji+1}

{false} if (pos = ji) then pos = ji + 1; Trans(P (ji + 1, k)); if (pos = k + 1) then pos = ji+1{Qji ∧ pos = k + 1} (E)

{Qji ∧ pos = ji ∧ ¬cond ∧ ((pos = ji ∧ cond) ∨ (pos > ji ∧ pos <= k))}(X5){Qji ∧ pos = k + 1}
(A)

Where (X5) = if (pos = ji) then pos = ji + 1; Trans(P (ji + 1, k)); if (pos = k + 1) then pos = ji+1

¬cond ∧ cond → false

pos = ji ∧ ¬cond ∧ pos = ji ∧ cond → false

pos = ji ∧ pos > ji → false

pos = ji ∧ ¬cond ∧ pos > ji ∧ pos <= k → false

((pos = ji ∧ ¬cond ∧ pos = ji ∧ cond) ∨ (pos = ji ∧ ¬cond ∧ pos > ji ∧ pos <= k)) → false

pos = ji ∧ ¬cond ∧ ((pos = ji ∧ cond) ∨ (pos > ji ∧ pos <= k)) → false

(E)

{pos = ji}pos = k + 1; {pos = k + 1}
{Qji ∧ pos = ji ∧ ¬cond}pos = k + 1; {Qji ∧ pos = k + 1}

{Qji ∧ pos = ji ∧ ¬cond ∧ pos = ji}pos = k + 1; {Qji ∧ pos = k + 1}
false → Qji ∧ pos = k + 1

Qji ∧ pos = ji ∧ ¬cond ∧ ¬pos = ji ∧Qji ∧ pos = k + 1

{Qji ∧ (pos = ji ∧ ¬cond)} if (pos = ji) then pos = k + 1; {Qji ∧ pos = k + 1} (F )

{Qji ∧ (pos = ji ∧ ¬cond) ∧ (¬pos = ji ∨ ¬cond) ∧ (¬pos > ji ∨ ¬pos < k))} if (pos = ji) then pos = k + 1; {Qji ∧ pos = k + 1}
{Qji ∧ (pos = ji ∧ ¬cond) ∧ ¬(pos = ji ∧ cond) ∧ ¬(pos > ji ∧ pos < k)} if (pos = ji) then pos = k + 1; {Qji ∧ pos = k + 1}
{Qji ∧ pos = ji ∧ ¬cond ∧ ¬((pos = ji ∧ cond) ∨ (pos > ji ∧ pos < k))} if (pos = ji) then pos = k + 1; {Qji ∧ pos = k + 1}

(B)

pos = ji ∧ (¬pos > ji ∨ ¬pos < k) ∧ pos = ji

Qji ∧ (pos = ji ∧ ¬cond) ∧ (¬pos = ji ∨ ¬cond) ∧ (¬pos > ji ∨ ¬pos < k) → Qji ∧ pos = ji ∧ ¬cond

(F )

pos = k + 1 ∧ pos > k ∧ pos < ji+1 → pos = k + 1 {Qji ∧ pos = k + 1}Trans(P (k + 1, ji+1 − 1)){Qji+1 ∧ pos = ji+1}
{Qji ∧ pos = k + 1 ∧ (pos > k ∧ pos < ji+1)}Trans(P (k + 1, ji+1 − 1)){Qji+1 ∧ pos = ji+1} (H)

{Qji ∧ pos = k + 1} if (pos > k ∧ pos < ji+1) then Trans(P (k + 1, ji+1 − 1)){Qji+1 ∧ pos = ji+1}
(C)

false → Qji+1 ∧ pos = ji+1

Qji ∧ pos = k + 1 ∧ ¬(pos > k ∧ pos < ji+1) → Qji+1 ∧ pos = ji+1

(H)

This enables us to state the following results:

Result 3 :
For P (ji, ji+1 − 1) a conditional structure satisfying:
{Qji ∧ pos = ji + 1} Trans(P (ji + 1, k)) {Qji+1 ∧ pos = k + 1}
{Qji ∧ pos = k + 1} Trans(P (k + 1, ji+1 − 1)) {Qji+1 ∧ pos = ji+1}

We have:
{Qji} P (ji, ji+1−1) {Qji+1} ⇒ {Qji∧pos = ji} Trans(P (ji, ji+1−1)) {Qji+1∧pos = ji+1} (T )

According to Result1, the two conditions of Result3 are true for simple instructions. Using structural
induction we can prove that this result remains correct for nested conditional structures.

Result 4 :
For Pn(ji, ji+1 − 1) a conditional structure having n nestings:

{Qji} Pn(ji, ji+1− 1) {Qji+1} ⇒ {Qji ∧ pos = ji} Trans(Pn(ji, ji+1− 1)) {Qji+1 ∧ pos = ji+1}
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Proof of Result4 Using structural induction:

• for n = 0, Pn has no nestings which means that P (ji + 1, k) and P (k + 1, ji+1 − 1) are composed of simple instructions.
In this case (T ) is correct.

• Assume that (T ) is correct for Pn and let us prove that (T ) is correct for Pn+1 which may be written as follow:

i f ( cond ) then P n ( j { i +1} ,k ) ; else P n (k+1, j { i +1}−1) ;

According to Result3, and as Pn(ji+1, k) and Pn(k +1, ji+1−1) verify (T ) according to the induction assumption, Pn+1

verifies (T ) and so Result4 is proved.

4.1.3 Case of Loop structures

A loop structure P (ji, ji+1 + 1) may be written as follows:

1 while ( cond ) do P( j { i }+1, j { i +1}−1) ;

Its transformation according to our transformation rules corresponds to:

1 while ( pos >= j i and pos < j { i +1}) do {
i f ( ( pos = j i and cond ) or ( pos > j i and pos < j { i +1}) ) then{

3 i f ( pos = j i ) then pos = j { i +1};
Trans (P( j { i }+1, j { i +1}−1) ) ;

5 i f ( pos = j { i +1}) then pos = j i ;
} else pos = j { i +1};

7 }

Consider that nb is the iteration number of the loop. So, P (ji, ji+1 − 1) corresponds to the sequential
execution of P (ji + 1, ji+1 − 1) nb times. So, we have :

• {Qji}P (ji, ji+1 − 1){Qji+1}
• ∀k ∈ {1...nb− 1}, we have {Qkji ∧ cond}P (ji + 1, ji+1 − 1){Qk+1ji ∧ cond}
• {Qnbji ∧ cond}P (ji + 1, ji+1 − 1){Qnb+1ji ∧ ¬cond}
• Qji = Q1ji

• Qnb+1ji ∧ ¬cond = Qji+1

• ∀k ∈ {1...nb}Qkji → Qkji ∧ cond and Qnb + 1ji → Qnb + 1ji ∧ ¬cond

We should prove that: {Qji ∧ pos = ji}Trans(P (ji, ji+1 − 1)){Qji+1 ∧ pos = ji+1}
For that, we should prove that:

- (i) ∀k ∈ {1...nb− 1} we have {Qkji ∧ pos = ji ∧ cond} blocWhile {Qk+1ji ∧ pos = ji ∧ cond} ((pos >=
ji ∧ pos < ji+1) = true)

- (ii) {Qnbji∧pos = ji∧cond} blocWhile {Qnb+1ji∧¬cond∧pos = ji} ((pos >= ji∧pos < ji+1) = true)

- (iii) {Qnb+1ji ∧ ¬cond ∧ pos = ji} blocWhile {Qnb+1ji ∧ ¬cond ∧ pos = ji+1} which results in the
termination of the loop as (pos >= ji ∧ pos < ji+1) = false.

(i) Let us prove that ∀k ∈ {1...nb−1} {Qkji∧pos = ji∧cond} blocWhile {Qk+1ji∧pos = ji∧cond}

(A) (B)

{Qkji ∧ pos = ji ∧ cond}(X6){Qk+1ji ∧ pos = ji ∧ cond}
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Where: (X6) = if ((pos = ji ∧ cond) ∨ (pos > ji ∧ pos < ji+1)){ if (pos = ji) then pos = ji+1; Trans(P (ji + 1, ji+1 − 1));
if (pos = ji+1) then pos = ji} else pos = ji+1

{Qkji ∧ pos = ji ∧ cond}pos = ji+1; {Qkji ∧ pos = ji+1 ∧ cond}
{Qkji ∧ pos = ji ∧ cond} if (pos = ji) then pos = ji+1; {Qkji ∧ pos = ji+1 ∧ cond} (C) (D)

{Qkji ∧ pos = ji ∧ cond ∧ ((pos = ji ∧ cond) ∨ (pos > ji ∧ pos < ji+1))}(X7){Qk+1ji ∧ pos = ji ∧ cond}
(A)

Where (X7) = if (pos = ji) then pos = ji + 1; Trans(P (ji + 1, ji+1 − 1)); if (pos = ji+1) then pos = ji

{Qkji}P (ji + 1, ji+1 − 1){Qk+1ji}
{Qkji ∧ pos = ji}Trans(P (ji + 1, ji+1 − 1)){Qk+1ji ∧ pos = ji+1}

(Already proved for simple and structured instructions)

{Qkji ∧ pos = ji+1 ∧ cond}Trans(P (ji + 1, ji+1 − 1)){Qk+1ji ∧ pos = ji+1 ∧ cond}
(C)

{pos = ji+1}pos = ji{pos = ji}
{Qk+1ji ∧ pos = ji+1 ∧ cond ∧ pos = ji+1}pos = ji{Qk+1ji ∧ pos = ji ∧ cond} (E)

{Qk+1ji ∧ pos = ji+1 ∧ cond} if (pos = ji+1) then pos = ji{Qk+1ji ∧ pos = ji ∧ cond}
(D)

false → Qk+1ji ∧ pos = ji ∧ cond

Qk+1ji ∧ pos = ji+1 ∧ cond ∧ ¬pos = ji+1 → Qk+1ji ∧ pos = ji ∧ cond

(E)

{false} if (pos = ji) then pos = ji + 1; Trans(P (ji + 1, ji+1 − 1)); if (pos = ji+1) then pos = ji{Qk+1ji ∧ pos = ji+1 ∧ cond}
{Qkji ∧ pos = ji ∧ cond ∧ ¬((pos = ji ∧ cond) ∨ (pos > ji ∧ pos < ji+1))} (X8) {Qk+1ji ∧ pos = ji ∧ cond}

(B)

Where (X8) = if (pos = ji) then pos = ji+1; Trans(P (ji + 1, ji+1 − 1)); if (pos = ji+1) then pos = ji;

(ii) Let us prove that {Qnbji ∧ pos = ji ∧ cond} blocWhile {Qnb+1ji ∧ ¬cond ∧ pos = ji}
(A) (B)

{Qnbj
i ∧ pos = ji ∧ cond}(X9){Qnb+1ji ∧ ¬cond ∧ pos = ji}

Where (X9) = if ((pos = ji ∧ cond)∨ (pos > ji ∧ pos < ji+1)) if (pos = ji) then pos = ji + 1; Trans(P (ji + 1, ji+1 − 1));
if (pos = ji+1) then pos = ji else pos = ji+1

{Qnbji ∧ pos = ji ∧ cond} pos = ji + 1 {Qnbji ∧ cond ∧ pos = ji + 1}
{Qnbji ∧ pos = ji ∧ cond} if (pos = ji) then pos = ji + 1{Qnbji ∧ cond ∧ pos = ji + 1} (C) (D)

{Qnbji ∧ pos = ji ∧ cond ∧ ((pos = ji ∧ cond) ∨ (pos > ji ∧ pos < ji+1))}(X10){Qnb+1ji ∧ ¬cond ∧ pos = ji}
(A)

Where (X10) = if (pos = ji) then pos = ji + 1; Trans(P (ji + 1, ji+1 − 1)); if (pos = ji+1) then pos = ji

{Qnbji ∧ cond} P (ji + 1, ji+1 − 1) {Qnb+1ji ∧ ¬cond}
{Qnbji ∧ pos = ji ∧ cond} Trans(P (ji + 1, ji+1 − 1)) {Qnb+1ji ∧ ¬cond ∧ pos = ji+1}

(Proved for simple and conditional structures)

{Qnbji ∧ cond ∧ pos = ji + 1} Trans(P (ji + 1, ji+1 − 1)) {Qnb+1ji ∧ ¬cond ∧ pos = ji+1}
(C)

{pos = ji+1} pos = ji {pos = ji}
{Qnb+1ji ∧ pos = ji+1 ∧ ¬cond ∧ pos = ji+1} pos = ji {Qnb+1ji ∧ pos = ji ∧ ¬cond} (E)

{Qnb+1ji ∧ ¬cond ∧ pos = ji+1} if (pos = ji+1) then pos = ji {Qnb+1ji ∧ ¬cond ∧ pos = ji}
(D)
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false → Qnb+1ji ∧ pos = ji ∧ ¬cond

Qnb+1ji ∧ pos = ji+1 ∧ ¬cond ∧ ¬pos = ji+1 → Qnb+1ji ∧ pos = ji ∧ ¬cond

(E)

{false} pos = ji+1 {Qnb+1ji ∧ pos = ji ∧ ¬cond}
{Qnb+1ji ∧ pos = ji ∧ cond ∧ ¬((pos = ji ∧ cond) ∨ (pos > ji ∧ pos < ji+1))} pos = ji+1 {Qnb+1ji ∧ pos = ji ∧ ¬cond}

(B)

(iii) Let us prove that {Qnb+1ji ∧ ¬cond ∧ pos = ji} blocWhile {Qnb+1ji ∧ ¬cond ∧ pos = ji+1}

(A) (B)

{Qnb+1ji ∧ ¬cond ∧ pos = ji}(X11){Qnb+1ji ∧ ¬cond ∧ pos = ji+1}

(X11) = if ((pos = ji ∧ cond) ∨ (pos > ji ∧ pos < ji+1)) if (pos = ji) then pos = ji + 1; Trans(P (ji + 1, ji+1 − 1)); if
(pos = ji+1) then pos = ji else pos = ji+1

{false} if (pos = ji) then pos = ji + 1; Trans(P (ji + 1, ji+1 − 1)); if (pos = ji+1) then pos = ji{Qnb+1ji ∧ pos = ji+1 ∧ ¬cond}
{Qnb+1ji ∧ pos = ji ∧ ¬cond ∧ ((pos = ji ∧ cond) ∨ (pos > ji ∧ pos < ji+1))}(X12){Qnb+1ji ∧ pos = ji+1 ∧ ¬cond}

(A)

Where (X12) = if (pos = ji) then pos = ji + 1; Trans(P (ji + 1, ji+1 − 1)); if (pos = ji+1) then pos = ji

{pos = ji}pos = ji+1{pos = ji+1}
{Qnb+1ji ∧ pos = ji ∧ ¬cond ∧ ¬((pos = ji ∧ cond) ∨ (pos > ji ∧ pos < ji+1))}pos = ji+1{Qnb+1ji ∧ pos = ji+1 ∧ ¬cond}

(B)

As proofs made for Result 2 and 4 we can prove the following result:

Result 5 :
For any loop Pn(ji, ji+1 − 1) having n nestings

{Qji} Pn(ji, ji+1 − 1) {Qji+1} ⇒ {Qji ∧ pos = ji} Trans(Pn(ji, ji+1 − 1)) {Qji+1 ∧ pos = ji+1}

Result 6 :
For any program composed of instructions belonging to S, nested conditional structures, and nested

loops:
{Q0} P {Qjn+1} ⇒ {Q0 ∧migration = false} Trans(P ) {Qjn+1 ∧ pos = jn+1}

4.2 Step 2: migration = true

In this case {Q0} PRecovery {Qjm∧pos = jm}. So, we should prove that all instructions occurring before jm will
not be executed, and all instructions occurring after jm will be executed and will preserve the post-conditions
of the original instructions. Therefore, we should prove that:

• (i) ∀i\ji+1 ≤ pos, {Qjm ∧ pos = jm} Trans(P (ji, ji+1 − 1)) {Qjm ∧ pos = jm}
• (ii) ∀i\ji ≤ pos ∧ ji+1 > jm, {Qjm ∧ pos = jm} Trans(P (ji, ji+1 − 1)) {Qji + 1 ∧ pos = ji+1}
• (iii) ∀i\ji > pos, {Qji ∧ pos = ji} Trans(P (ji, ji+1 − 1)) {Qji+1 ∧ pos = ji+1} (true according to Result 1)

The last item is true according to Result1. But for the two first ones, we should make the proof according
to the structure of P (ji, ji+1 − 1).

4.2.1 Case of simple instructions

• (i) Let’s prove that ∀i such as ji+1 <= pos . {Qjm∧pos = jm} Trans(P (ji, ji+1−1)){Qjm∧pos = jm}

15



{false}P (ji, ji+1 − 1){Qm ∧ pos = jm}
{Qjm ∧ pos = jm ∧ ji < pos ∧ pos = ji} P (ji, ji+1 − 1); pos = pos + 1{Qjm ∧ pos = jm} (A)

{Qjm ∧ pos = jm ∧ ji < pos} if (pos = ji) then P (ji, ji+1 − 1); pos = pos + 1; {Qjm ∧ pos = jm}
{Qjm ∧ pos = jm ∧ ji < pos}P (ji, ji+1 − 1){Qjm ∧ pos = jm}

(Qjm ∧ pos = jm ∧ ji < jm) → Qjm ∧ pos = jm

(Qjm ∧ pos = jm ∧ ji < jm ∧ ¬pos = ji) → Qjm ∧ pos = jm

(A)

• (ii) Let’s prove that ∀i such as ji <= pos ∧ ji+1 > pos . {Qjm ∧ pos = jm} Trans(P (ji, ji+1 −
1)) {Qji+1 ∧ pos = ji+1}
As ji+1 − ji = 1, we should prove that: ∀i such as ji = jm . {Qjm ∧ pos = jm} Trans(P (ji, ji+1 −
1)) {Qji+1 ∧ pos = ji+1} which is true according to Result 1.

Thus, we proved the following results.

Result 7 :
∀i ∈ 0, ..., n and P (ji, ji+1 − 1) ∈ S such as {Qji} P (ji, ji+1 − 1){Qji+1}
• ∀i such as ji+1 <= pos . {Qjm ∧ pos = jm} Trans(P (ji, ji+1 − 1)){Qjm ∧ pos = jm}
• ∀i such as ji <= pos ∧ ji+1 > jm . {Qjm ∧ pos = jm} Trans(P (ji, ji+1 − 1)){Qji+1 ∧ pos = ji+1}
• ∀i such as ji > pos . {Qji ∧ pos = ji} Trans(P (ji, ji+1 − 1)){Qji+1 ∧ pos = ji+1}

Result 8 :
For any program P composed of instructions belonging to S

{Q0} P {Qjn+1} ⇒ {Q0 ∧migration = true} Trans(P ) {Qjn+1 ∧ pos = jn+1}

Proof of Result 8
In order to prove that {Q0 ∧migration = true} Trans(P ) {Qji+1 ∧ pos = ji+1}, we should prove that {Q0 ∧migration =

true} Precovery; Trans(P (0, jm − 1)); Trans(P (jm, jn)); {Qjn + 1 ∧ pos = jn+1}. The latter is true as we have

• {Q0 ∧migration} Precovery {Qjm ∧ pos = jm}
• {Qjm ∧ pos = jm} Trans(P (0, jm − 1)) {Qjm ∧ pos = jm}
• {Qjm ∧ pos = jm} Trans(P (jm, Qji+1)) {Qji+1 ∧ pos = ji+1}

4.2.2 Case of conditional structures

(i) Let us prove that ∀i\ji+1 <= pos . {Qjm ∧ pos = jm} Trans(P (ji, ji+1 − 1)) {Qjm ∧ pos = jm}
(A) (B)

{Qjm ∧ pos = jm ∧ ji+1 <= pos}blocIf{Qjm ∧ pos = jm ∧ ji+1 <= jm}
(C) (D)

{Qjm ∧ pos = jm ∧ ji+1 <= pos}BlocElse{Qjm ∧ pos = jm}
{Qjm ∧ pos = jm ∧ ji+1 <= pos} Trans(P (ji, ji+1 − 1)) {Qjm ∧ pos = jm}

{false} if (pos = ji) then pos = ji + 1; Trans(P (ji + 1, k)); if(pos = k + 1) then pos = ji+1{Qjm ∧ pos = jm ∧ ji+1 <= jm}
{Qjm ∧ pos = jm ∧ ji+1 <= pos ∧ ((pos = ji ∧ cond) ∨ (pos > ji ∧ pos <= k))} (X13) {Qjm ∧ pos = jm ∧ ji+1 <= jm}

(A)

(X13) = if (pos = ji) then pos = ji+1; Trans(P (ji + 1, k)); if (pos = k + 1) then pos = ji+1

(E) (F )

{Qjm ∧ pos = jm ∧ ji+1 <= pos} if (pos = ji) pos = k + 1; {Qjm ∧ pos = jm ∧ ji+1 <= jm}
{Qjm ∧ pos = jm ∧ ji+1 <= pos ∧ ¬(pos = ji ∧ cond) ∧ ¬(pos > ji ∧ pos <= k)} if (pos = ji) pos = k + 1; {Qjm ∧ pos = jm ∧ ji+1 <= jm}
{Qjm ∧ pos = jm ∧ ji+1 <= pos ∧ ¬((pos = ji ∧ cond) ∨ (pos > ji ∧ pos <= k))} if (pos = ji) pos = k + 1; {Qjm ∧ pos = jm ∧ ji+1 <= jm}

(B)
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{false} pos = k + 1 {Qjm ∧ pos = jm ∧ ji+1 <= pos}
{Qjm ∧ pos = jm ∧ ji+1 <= pos ∧ pos = ji} pos = k + 1 {Qjm ∧ pos = jm ∧ ji+1 <= pos}

(E)

(Qjm ∧ pos = jm ∧ ji+1 <= pos) → (Qjm ∧ pos = jm ∧ ji+1 <= pos)

(Qjm ∧ pos = jm ∧ ji+1 <= pos ∧ ¬pos = ji) → (Qjm ∧ pos = jm ∧ ji+1 <= pos)

(F )

{false} Trans(P (k + 1, ji+1 − 1)) {Qjm ∧ pos = jm}
{Qjm ∧ pos = jm ∧ ji+1 <= pos ∧ pos >= k ∧ pos < ji+1} Trans(P (k + 1, ji+1 − 1)) {Qjm ∧ pos = jm}

(C)

ji+1 <= pos ∧ (pos < k ∨ pos >= ji+1) → ji+1 <= pos

Qjm ∧ pos = jm ∧ ji+1 <= pos ∧ (pos < k ∨ pos >= ji+1) → Qjm ∧ pos = jm

Qjm ∧ pos = jm ∧ ji+1 <= pos ∧ (¬pos >= k ∨ ¬pos < ji+1) → Qjm ∧ pos = jm

(Qjm ∧ pos = jm ∧ ji+1 <= pos ∧ ¬(pos >= k ∧ pos < ji+1)) → Qjm ∧ pos = jm

(D)

(ii) Let us prove that ∀i\ji <= pos < ji+1 . {Qjm ∧ pos = jm} Trans(P (ji, ji+1 − 1)) {Qji+1 ∧ pos =
ji+1}

We consider here three cases:

• pos = ji (already proved according to results 3, 4 et 5)

• ji < pos <= k

• k + 1 <= pos < ji+1

Let’s prove that ∀i\ji < pos <= k . {Qjm ∧ pos = jm} Trans(P (ji, ji+1 − 1)) {Qji+1 ∧ pos = ji+1}
(A) (B)

{Qjm ∧ pos = jm ∧ ji < pos ∧ jm <= k}blocIf{Qji+1 ∧ pos = ji+1}
(C) (D)

{Qji+1 ∧ pos = ji+1}BlocElse{Qji+1 ∧ pos = ji+1}
{Qjm ∧ pos = jm ∧ ji < pos ∧ pos <= k} Trans(P (ji, ji+1 − 1)) {Qji+1 ∧ pos = ji+1}

(E) (F ) (H)

{Qjm ∧ pos = jm ∧ ji < pos ∧ pos <= k} (X14) {Qji+1 ∧ pos = ji+1}
{Qjm ∧ pos = jm ∧ ji < pos ∧ pos <= k ∧ ((pos = ji ∧ cond) ∨ (pos > ji ∧ pos <= k))} (X14) {Qji+1 ∧ pos = ji+1}

(A)

(X14) = if (pos = ji) then pos = ji+1; Trans(P (ji + 1, k)); if (pos = k + 1) then pos = ji+1;

(M) (N)

{Qjm ∧ pos = jm ∧ ji < pos ∧ pos <= k} if (pos = ji) then pos = ji + 1 {Qjm ∧ pos = jm ∧ ji < pos ∧ pos <= k}
(E)

{false}pos = ji + 1{Qjm ∧ pos = jm ∧ ji < pos ∧ pos <= k}
{Qjm ∧ pos = jm ∧ pos <= k ∧ (false)}pos = ji + 1{Qjm ∧ pos = jm ∧ ji < pos ∧ pos <= k}

{Qjm ∧ pos = jm ∧ pos <= k ∧ (pos = ji ∧ ji < pos)}pos = ji + 1{Qjm ∧ pos = jm ∧ ji < pos ∧ pos <= k}
{Qjm ∧ pos = jm ∧ ji < pos ∧ pos <= k ∧ pos = ji}pos = ji + 1{Qjm ∧ pos = jm ∧ ji < pos ∧ pos <= k}

(M)

¬pos = ji ∧ ji < pos → ji < pos

Qjm ∧ pos = jm ∧ pos <= k ∧ (¬pos = ji ∧ ji < pos) → Qjm ∧ pos = jm ∧ ji < pos ∧ pos <= k

Qjm ∧ pos = jm ∧ ji < pos ∧ pos <= k ∧ ¬pos = ji → Qjm ∧ pos = jm ∧ ji < pos ∧ pos <= k

(N)
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(L) (O) (P )

{Qjm ∧ pos = jm ∧ ji < pos ∧ pos <= k}Trans(P (ji + 1, jm − 1)); Trans(P (jm, jm+1 − 1)); Trans(P (jm+1, k)); {Qji+1 ∧ pos = k + 1}
{Qjm ∧ pos = jm ∧ ji < pos ∧ pos <= k}Trans(P (ji + 1, k)){Qji+1 ∧ pos = k + 1}

(F )

(L) = {Qjm ∧ pos = jm ∧ ji < pos ∧ pos <= k}Trans(P (ji + 1, jm − 1)){Qjm ∧ pos = jm ∧ ji < pos ∧ pos <= k}

{Qjm ∧ pos = jm}Trans(P (jm, jm+1 − 1)){Qjm+1 ∧ pos = jm+1}
{Qjm ∧ pos = jm ∧ ji < pos ∧ pos <= k}Trans(P (jm, jm+1 − 1)){Qjm+1 ∧ pos = jm+1 ∧ ji < pos ∧ pos <= k}

(O)

{Qjm+1}P (jm+1, k){Qji+1}
{Qjm+1 ∧ pos = jm+1}Trans(P (jm+1, k)){Qji+1 ∧ pos = k + 1}

(P )

{Qji+1 ∧ pos = k + 1}pos = ji+1{Qji+1 ∧ pos = ji+1}
{Qji+1 ∧ pos = k + 1 ∧ pos = k + 1}pos = ji+1{Qji+1 ∧ pos = ji+1}

false → (Qji+1 ∧ pos = ji+1

Qji+1 ∧ pos = k + 1 ∧ ¬pos = k + 1 → Qji+1 ∧ pos = ji+1

{Qji+1 ∧ pos = k + 1}if(pos = k + 1)thenpos = ji+1{Qji+1 ∧ pos = ji+1}
(H)

{false}if(pos = ji)pos = k + 1; {Qji+1 ∧ pos = ji+1} (ji < pos ∧ pos <= k) ∧ ¬(pos > ji ∧ pos <= k) → false

{Qjm ∧ pos = jm ∧ (ji < pos ∧ pos <= k) ∧ ¬(pos = ji ∧ cond) ∧ ¬(pos > ji pos <= k)}if(pos = ji)pos = k + 1; {Qji+1 ∧ pos = ji+1}
{Qjm ∧ pos = jm ∧ ji < pos ∧ pos <= k ∧ ¬((pos = ji ∧ cond) ∨ (pos > ji ∧ pos <= k))}if(pos = ji)pos = k + 1; {Qji+1 ∧ pos = ji+1}

(B)

{false}Trans(P (k + 1, ji+1 − 1)){Qji+1 ∧ pos = ji+1} (pos = ji+1 ∧ pos < ji+1) → false

{Qji+1 ∧ (pos = ji+1 ∧ pos < ji+1) ∧ pos >= k}Trans(P (k + 1, ji+1 − 1)){Qji+1 ∧ pos = ji+1}
{Qji+1 ∧ pos = ji+1 ∧ (pos >= k ∧ pos < ji+1)}Trans(P (k + 1, ji+1 − 1)){Qji+1 ∧ pos = ji+1}

(C)

(Qji+1 ∧ pos = ji+1 ∧ (pos < k ∨ pos >= ji+1)) → (Qji+1 ∧ pos = ji+1)

(Qji+1 ∧ pos = ji+1 ∧ (¬pos >= k ∨ ¬pos < ji+1)) → (Qji+1 ∧ pos = ji+1)

(Qji+1 ∧ pos = ji+1 ∧ ¬(pos >= k ∧ pos < ji+1)) → (Qji+1 ∧ pos = ji+1)

(D)

Let’s prove that ∀i\k+1 <= pos < ji+1 . {Qjm∧pos = jm} Trans(P (ji, ji+1−1)) {Qji+1∧pos = ji+1}
(X) (Y )

{Qjm ∧ pos = jm ∧ k < pos ∧ pos < ji+1}Trans(P (ji, ji+1 − 1)){Qji+1 ∧ pos = ji+1}

(A) (B)

{Qjm ∧ pos = jm ∧ k < pos ∧ pos < ji+1} blocIf {Qjm ∧ pos = jm ∧ k <= jm ∧ jm < ji+1}
(X)

(C) (D)

{Qjm ∧ pos = jm ∧ k < pos ∧ pos < ji+1} BlocElse {Qji+1 ∧ pos = ji+1}
(Y )

{false} (X15) {Qjm ∧ pos = jm ∧ k < pos ∧ pos < ji+1}
{(false) ∨ (false)} (X15) {Qjm ∧ pos = jm ∧ k < pos ∧ pos < ji+1}

{Qjm ∧ pos = jm ∧ k < pos ∧ pos < ji+1 ∧ ((pos = ji ∧ cond) ∨ (pos > ji ∧ pos <= k))} (X15) {Qjm ∧ pos = jm ∧ k < pos ∧ pos < ji+1}
(A)

(X15) =if (pos = ji) then pos = ji+1; Trans(P (ji + 1, k)); if (pos = k + 1) then pos = ji+1
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(F ) (G)

{Qjm ∧ pos = jm ∧ k < pos ∧ pos < ji+1 ∧ (¬pos = ji ∨ ¬cond) ∧ (¬pos > ji ∨ ¬pos <= k)}(X16){Qjm ∧ pos = jm ∧ k < pos ∧ pos < ji+1}
{Qjm ∧ pos = jm ∧ k < pos ∧ pos < ji+1 ∧ ¬(pos = ji ∧ cond) ∧ ¬(pos > ji ∧ pos <= k)}(X16){Qjm ∧ pos = jm ∧ k < pos ∧ pos < ji+1}
{Qjm ∧ pos = jm ∧ k < pos ∧ pos < ji+1 ∧ ¬((pos = ji ∧ cond) ∨ (pos > ji ∧ pos <= k))}(X16){Qjm ∧ pos = jm ∧ k < pos ∧ pos < ji+1}

(B)

(X16) = if (pos = ji) then pos = k + 1;

pos = jm ∧ (¬pos = ji ∨ ¬cond) → pos = jm (¬pos > ji ∨ ¬pos <= k) ∧ k < pos → k < pos

pos = jm ∧ k < pos ∧ (¬pos = ji ∨ ¬cond) ∧ (¬pos > ji ∨ ¬pos <= k) → pos = jm ∧ k < pos

(F )

{false}pos = k + 1{Qjm ∧ pos = jm ∧ k < pos ∧ pos < ji+1} k < pos ∧ pos = ji → false

{Qjm ∧ pos = jm ∧ (k < pos ∧ pos = ji) ∧ pos < ji+1}pos = k + 1{Qjm ∧ pos = jm ∧ k < pos ∧ pos < ji+1}
{Qjm ∧ pos = jm ∧ k < pos ∧ pos < ji+1 ∧ pos = ji}pos = k + 1{Qjm ∧ pos = jm ∧ k < pos ∧ pos < ji+1} (H)

{Qjm ∧ pos = jm ∧ k < pos ∧ pos < ji+1}(X16){Qjm ∧ pos = jm ∧ k < pos ∧ pos < ji+1}
(G)

(Qjm ∧ pos = jm ∧ k < pos ∧ pos < ji+1 ∧ ¬pos = ji) → (Qjm ∧ pos = jm ∧ k < jm ∧ jm < ji+1)

(H)

{Qjm ∧ pos = jm ∧ k < pos ∧ pos < ji+1}Trans(P (k + 1, jm − 1)); {Qjm ∧ pos = jm} (M)

{Qjm ∧ pos = jm ∧ k < pos ∧ pos < ji+1}Trans(P (k + 1, jm − 1)); Trans(P (jm, ji+1 − 1)); {Qji+1 ∧ pos = ji+1}
{Qjm ∧ pos = jm ∧ k < pos ∧ pos < ji+1}Trans(P (k + 1, ji+1 − 1)){Qji+1 ∧ pos = ji+1}

{Qjm ∧ pos = jm ∧ k < pos ∧ pos < ji+1 ∧ (pos > k ∧ pos < ji+1)}Trans(P (k + 1, ji+1 − 1)){Qji+1 ∧ pos = ji+1}
(C)

{Qjm ∧ pos = jm}Trans(P (jm, ji+1 − 1)){Qji+1 ∧ pos = ji+1}
(M)

(false)) → (Qji+1 ∧ pos = ji+1) k < pos ∧ pos < ji+1 ∧ ¬(pos > k ∧ pos < ji+1) → false

(Qjm ∧ pos = jm ∧ k < pos ∧ pos < ji+1 ∧ ¬(pos > k ∧ pos < ji+1)) → (Qji+1 ∧ pos = ji+1)

(D)

Thereby, we can prove by induction as made for result 4 the following result.

Result 9:
for P (ji, ji+1 − 1)) a nested conditional structure, such as {Qji} P (ji, ji+1 − 1) {Qji+1}, we have:

• ∀i\ji+1 <= pos . {Qjm ∧ pos = jm} Trans(P (ji, ji+1 − 1)) {Qjm ∧ pos = jm}
• ∀i\ji <= pos ∧ ji+1 > jm . {Qjm ∧ pos = jm} Trans(P (ji, ji+1 − 1)) {Qji+1 ∧ pos = ji+1}
• ∀i\ji > pos . {Qji ∧ pos = ji} Trans(P (ji, ji+1 − 1)) {Qji+1 ∧ pos = ji+1}

4.2.3 Case of loop structures

Here, we consider that the last captured state is located in the while structure. So, we should consider the
number of the actual iteration h. So, we have:

{Q0} PRecovery {Qjh
m ∧ pos = jm}

Therefore, we should prove that:

• (i) ∀i\ji+1 <= pos . {Qjh
m ∧ pos = jm} Trans(P (ji, ji+1 − 1)) {Qjh

m ∧ pos = jm}
• (ii) ∀i\ji <= pos ∧ ji+1 > jm . {Qjh

m ∧ pos = jm} Trans(P (ji, ji+1 − 1)) {Qji+1 ∧ pos = ji+1}
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• (iii) ∀i\ji > pos . {Qji ∧ pos = ji} Trans(P (ji, ji+1 − 1)) {Qji+1 ∧ pos = ji+1} (true, according to
result 4)

(i) Let’s prove that ∀i\ji+1 <= pos . {Qjh
m ∧ pos = jm} Trans(P (ji, ji+1 − 1)) {Qjh

m ∧ pos = jm}
which corresponds to prove that:
{Qjh

m∧pos = jm∧ji+1 <= pos} while(pos >= ji∧pos < ji+1) if((pos = ji∧cond)∨(pos > ji∧pos < ji+1))
if (pos = ji) then pos = ji+1; Trans(P (ji+1, ji+1 − 1)); if (pos = ji+1) then pos = ji; else pos = ji+1

{Qjh
m ∧ pos = jm}
According to the pre-condition, the loop condition will never be satisfied. So, we should prove that:

Qjh
m ∧ pos = jm ∧ ji+1 <= pos ∧Qjh

m ∧ pos = jm. (which is true)

(ii) Let’s prove that (ii) ∀i\ji <= pos∧ji+1 > jm . {Qjh
m∧pos = jm} Trans(P (ji, ji+1−1)) {Qji+1∧

pos = ji+1}
For that, we should prove that:
{Qjh

m∧pos = jm∧ ji <= pos∧pos < ji+1} while (pos >= ji ∧ pos < ji+1) {intWhile} {Qji+1∧pos = ji+1}
Where
intWhile = if ((pos = ji ∧ cond) ∨ (pos > ji ∧ pos < ji+1)) {

if (pos = ji) then pos = ji + 1;
Trans(P(ji + 1, ji+1 − 1));
if (pos = ji+1) then pos = ji;

} else pos = ji+1;
The loop condition is satisfied, so we can linearize the loop. Thereby, we have to prove that:

• if h < nb

– (1.1) {Qjh
m ∧ pos = jm ∧ ji <= pos ∧ pos < ji+1} intWhile {Qjh+1

i ∧ pos = ji ∧ cond} (loop
condition is satisfied (pos >= ji ∧ pos < ji+1) = true)

– (1.2) ∀k ∈ {h + 1...nb − 1}{Qjk
i ∧ pos = ji ∧ cond} intWhile {Qjk+1

i ∧ pos = ji ∧ cond} (loop
condition is satisfied(pos >= ji ∧ pos < ji+1) = true) (already proved)

– (1.3) {Qjnb
i ∧ pos = ji ∧ cond} intWhile {Qjnb+1

i ∧ ¬cond ∧ pos = ji} (loop condition is satisfied
(pos >= ji ∧ pos < ji+1) = true) (already proved)

– (1.4){Qjnb+1
i ∧¬cond∧pos = ji} intWhile{Qjnb+1

i ∧¬cond∧pos = ji+1} (already proved) which
results in the termination of the loop as (pos >= ji ∧ pos < ji+1) = false.

• If h = nb

– (2) {Qjh
m ∧ pos = jm ∧ ji <= pos ∧ pos < ji+1} intWhile {Qjnb+1

i ∧ ¬cond ∧ pos = ji} ((pos >=
ji ∧ pos < ji+1) = true)

• If h = nb + 1

– (3) {Qjh
m ∧ pos = jm ∧ ji <= pos ∧ pos < ji+1} intWhile {Qjnb+1

i ∧ ¬cond ∧ pos = ji+1} which
results in the termination of the loop as (pos >= ji ∧ pos < ji+1) = false.

(1.1) Let’s prove that for h < nb . {Qjh
m ∧ pos = jm ∧ ji <= pos∧ pos < ji+1} intWhile {Qjh+1

i ∧ pos =
ji ∧ cond}

We consider here two cases: pos = ji and pos > ji

• Case 1: pos = ji
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Let’s prove that {Qjh
i ∧ pos = ji} intWhile {Qjh+1

i ∧ pos = ji ∧ cond}, in case of h < nb. The latter
means that Qjh

i → Qjh
i ∧ cond

(A) (B)

{Qjh
i ∧ pos = ji ∧ cond} intWhile {Qjh+1

i ∧ pos = ji ∧ cond}

{pos = ji} pos = ji + 1 {pos = ji + 1}
{Qjh

i ∧ pos = ji ∧ cond} if (pos = ji) then pos = ji + 1; {Qjh
i ∧ pos = ji + 1 ∧ cond} (C) (D)

{Qjh
i ∧ pos = ji ∧ cond ∧ ((pos = ji ∧ cond) ∨ (pos > ji ∧ pos < ji+1))} X16 {Qjh+1

i ∧ pos = ji ∧ cond}
(A)

X16 = if (pos = ji) then pos = ji + 1; Trans(P (ji + 1, ji+1 − 1)); if (pos = ji+1) then pos = ji;

{Qjh
i ∧ cond}P (ji + 1, ji+1 − 1){Qjh+1

i ∧ cond}
{Qjh

i ∧ pos = ji + 1 ∧ cond}Trans(P (ji + 1, ji+1 − 1)){Qjh+1
i ∧ pos = ji+1 ∧ cond}

(C)

{pos = ji+1}pos = ji{pos = ji}
{Qjh+1

i ∧ pos = ji+1 ∧ cond} if (pos = ji+1) then pos = ji{Qjh+1
i ∧ pos = ji ∧ cond}

(D)

{false}pos = ji+1{Qjh+1
i ∧ pos = ji ∧ cond}

{Qjh
i ∧ pos = ji ∧ cond ∧ ¬((pos = ji ∧ cond) ∨ (pos > ji ∧ pos < ji+1))}pos = ji+1{Qjh+1

i ∧ pos = ji ∧ cond}
(B)

• Case 2: pos > ji

Let’s prove that for h < nb . {Qjh
m∧pos = jm∧ji < pos∧pos < ji+1} intWhile {Qjh+1

i ∧pos = ji∧cond}
(A) (B)

{Qjh
m ∧ pos = jm ∧ ji < pos ∧ pos < ji+1} intWhile {Qjh+1

i ∧ pos = ji ∧ cond}

(E) (F )

{Qjh
m ∧ pos = jm ∧ ji < pos ∧ pos < ji+1} if (pos = ji) then pos = ji+1 {Qjh

m ∧ pos = jm ∧ ji < pos ∧ pos < ji+1} (C) (D)

{Qjh
m ∧ pos = jm ∧ ji < pos ∧ pos < ji+1 ∧ ((pos = ji ∧ cond) ∨ (pos > ji ∧ pos < ji+1))}(X16){Qjh+1

i ∧ pos = ji ∧ cond}
(A)

{false} pos = ji+1 {Qjh
m ∧ pos = jm ∧ ji < pos ∧ pos < ji+1}

{Qjh
m ∧ pos = jm ∧ ji < pos ∧ pos < ji+1 ∧ pos = ji} pos = ji+1{Qjh

m ∧ pos = jm ∧ ji < pos ∧ pos < ji+1}
(E)

Qjh
m ∧ pos = jm ∧ ji < pos ∧ pos < ji+1 ∧ ¬pos = ji → Qjh

m ∧ pos = jm ∧ ji < pos ∧ pos < ji+1

(F )

{Qjh
m ∧ pos = jm ∧ ji < pos ∧ pos < ji+1} Trans(P (ji + 1, ji+1 − 1)); {Qjh+1

i ∧ pos = ji+1}
{Qjh

m ∧ pos = jm ∧ ji < pos ∧ pos < ji+1} Trans(P (ji + 1, ji+1 − 1)); {Qjh+1
i ∧ pos = ji+1 ∧ cond}

(C)

{pos = ji+1}pos = ji{pos = ji}
{Qjh+1

i ∧ pos = ji+1 ∧ cond} if (pos = ji+1) then pos = ji {Qjh+1
i ∧ pos = ji ∧ cond}

(D

{false}pos = ji+1{Qjh+1
i ∧ pos = ji ∧ cond}

{Qjh
m ∧ pos = jm ∧ ji < pos ∧ pos < ji+1 ∧ ¬((pos = ji ∧ cond) ∨ (pos > ji ∧ pos < ji+1))}pos = ji+1{Qjh+1

i ∧ pos = ji ∧ cond}
(B)
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(2) Let’s prove that for h = nb . {Qjh
m∧pos = jm∧ ji <= pos∧pos < ji+1} intWhile {Qjnb+1

i ∧¬cond∧
pos = ji}

We consider here two cases: pos = ji and pos > ji

• Case 1: pos = ji

Let’s prove that {Qjnbi ∧ pos = ji} intWhile {Qjnb+1
i ∧ ¬cond ∧ pos = ji}. In this case, we have

Qjnbi → Qjnbi ∧ cond

(A) (B)

{Qjnbi ∧ pos = ji} intWhile {Qjnb+1
i ∧ ¬cond ∧ pos = ji}

{pos = ji} pos = ji+1 {pos = ji+1}
{Qjnb

i ∧ pos = ji ∧ cond} if(pos = ji) then pos = ji+1 {Qjnb
i ∧ pos = ji + 1 ∧ cond} (C) (D)

{Qjnb
i ∧ pos = ji ∧ cond ∧ ((pos = ji ∧ cond) ∨ (pos > ji ∧ pos < ji+1))}(X16){Qjnb+1

i ∧ pos = ji ∧ ¬cond}
(A)

{Qjnb
i ∧ cond} P (ji + 1, ji+1 − 1) {Qjnb+1

i ∧ ¬cond}
{Qjnb

i ∧ pos = ji + 1 ∧ cond} Trans(P (ji + 1, ji+1 − 1)) {Qjnb+1
i ∧ pos = ji+1 ∧ ¬cond}

(C)

{pos = ji+1} pos = ji {pos = ji}
{Qjnb+1

i ∧ pos = ji+1 ∧ ¬cond} if (pos = ji+1) then pos = ji {Qjnb+1
i ∧ pos = ji ∧ cond}

(D)

{false}pos = ji+1{Qjnb+1
i ∧ pos = ji ∧ cond}

{Qjnb
i ∧ pos = ji ∧ cond ∧ ¬((pos = ji ∧ cond) ∨ (pos > ji ∧ pos < ji+1))} pos = ji+1{Qjnb+1

i ∧ pos = ji ∧ cond}
(B)

• Case 2: pos > ji

Let’s prove that {Qjnbi ∧ ji < pos ∧ pos < ji+1} intWhile {Qjnb+1
i ∧ ¬cond ∧ pos = ji}.

(A) (B)

{Qjnbi ∧ ji < pos ∧ pos < ji+1} intWhile {Qjnb+1
i ∧ ¬cond ∧ pos = ji}

(E) (F )

{Qjnb
m ∧ pos = jm ∧ ji < pos ∧ pos < ji+1} if (pos = ji) then pos = ji+1 {Qjnb

m ∧ pos = jm ∧ ji < pos ∧ pos < ji+1} (C) (D)

{Qjnb
m ∧ pos = jm ∧ ji < pos ∧ pos < ji+1 ∧ ((pos = ji ∧ cond) ∨ (pos > ji ∧ pos < ji+1))} (X16) {Qjnb+1

i ∧ pos = ji ∧ ¬cond}
(A)

{false} pos = ji + 1{Qjnb
m ∧ pos = jm ∧ ji < pos ∧ pos < ji+1}

{Qjnb
m ∧ pos = jm ∧ ji < pos ∧ pos < ji+1 ∧ pos = ji} pos = ji + 1{Qjnb

m ∧ pos = jm ∧ ji < pos ∧ pos < ji+1}
(E)

Qjnb
m ∧ pos = jm ∧ ji < pos ∧ pos < ji+1 ∧ ¬pos = ji → Qjnb

m ∧ pos = jm ∧ ji < pos ∧ pos < ji+1

(F )

{Qjnb
m ∧ pos = jm ∧ ji < pos ∧ pos < ji+1} Trans(P (ji + 1, ji+1 − 1)); {Qjnb+1

i ∧ pos = ji+1}
{Qjnb

m ∧ pos = jm ∧ ji < pos ∧ pos < ji+1} Trans(P (ji + 1, ji+1 − 1)); {Qjnb+1
i ∧ pos = ji+1 ∧ ¬cond}

(C)

{pos = ji+1} pos = ji {pos = ji}
{Qjnb+1

i ∧ pos = ji+1 ∧ ¬cond} if (pos = ji+1) then pos = ji {Qjnb+1
i ∧ pos = ji ∧ ¬cond}

(D)
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{false} pos = ji+1 {Qjnb+1
i ∧ pos = ji ∧ ¬cond}

{Qjnb
m ∧ pos = jm ∧ ji < pos ∧ pos < ji+1 ∧ ¬((pos = ji ∧ cond) ∨ (pos > ji ∧ pos < ji+1))} pos = ji+1{Qjnb+1

i ∧ pos = ji ∧ ¬cond}
(B)

(3) Let’s prove that for h = nb + 1 . {Qjh
m ∧ pos = jm ∧ ji <= pos ∧ pos < ji+1} intWhile {Qjnb+1

i ∧
¬cond ∧ pos = ji+1}

In this case, we have jm = ji and Qjnb+1
i → Qjnb+1

i ∧ ¬cond. So, let’s prove that {Qjh
m ∧ pos =

ji} intWhile {Qjnb+1
i ∧ ¬cond ∧ pos = ji+1}

(A) (B)

{Qjh
m ∧ pos = ji} intWhile {Qjnb+1

i ∧ ¬cond ∧ pos = ji+1}

{false} if (pos = ji) then pos = ji+1; Trans(P (ji + 1, ji+1 − 1)); if (pos = ji+1) then pos = ji {Qjnb+1
i ∧ pos = ji ∧ ¬cond}

{Qjnb+1
i ∧ pos = ji ∧ ¬cond ∧ ((pos = ji ∧ cond) ∨ (pos > ji ∨ pos < ji+1))} (X16) {Qjnb+1

i ∧ pos = ji+1 ∧ ¬cond}
(A)

{pos = ji} pos = ji+1 {pos = ji+1}
{Qjnb+1

i ∧ pos = ji ∧ ¬cond} pos = ji+1 {Qjnb+1
i ∧ pos = ji+1 ∧ ¬cond}

{Qjnb+1
i ∧ pos = ji ∧ ¬cond ∧ ¬((pos = ji ∧ cond) ∨ (pos > ji ∧ pos < ji+1))} pos = ji+1 {Qjnb+1

i ∧ pos = ji ∧ ¬cond}
B

Thus, we can deduce the following results

Result 10:

P (ji, ji+1 − 1)) a nested loop and Qjh
m the last saved state at position m of iteration h

if {Qji} P (ji, ji+1 − 1) {Qji+1} then

• ∀i\ji+1 <= pos . {Qjh
m ∧ pos = jm} Trans(P (ji, ji+1 − 1)){Qjh

m ∧ pos = jm}
• ∀i\ji <= pos ∧ ji+1 > jm . {Qjh

m ∧ pos = jm} Trans(P (ji, ji+1 − 1)) {Qji+1 ∧ pos = ji+1}
• ∀i\ji > pos . {Qji ∧ pos = ji} Trans(P (ji, ji+1 − 1)) {Qji+1 ∧ pos = ji+1}

This results may be proved by induction for nested loop. Also, we can prove using structural induction
the following result.

Result 11:

For any program P composed of instructions belonging to S, nested conditional structures, and nested
loops:

{Q0} P {Qjn+1} ⇒ {Q0 ∧migration = true} Trans(P ) {Qjn+1 ∧ pos = jn+1}
Results 6 and 11 allows us to state that :

Result 12 :

For any program P composed of instructions belonging to S, nested conditional structures, and nested
loops

{Q0} P {Qjn+1} ⇒ {Q0} Trans(P ) {Qjn+1 ∧ pos = jn+1}
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5 Proof of correctness of Specific Source Code transformation
rules

For proving the correctness of our source code transformation rules which are specific for BPEL activities,
we employ the Stirling compositional logic [3] which corresponds to an extension of the Hoare logic covering
the case of parallel programs with shared variables.

The Stirling compositional logic is based on specifications of commands under the form:

(Rc, Gc) : {P} C {Q}
Where P is a precondition and Q is a postcondition whereas Rc defines the relationship which can be

assumed to exist between the free variables of command C in states changed by other processes, and Gc is
a commitment which must be respected by all state transformations of C.

In the next sections, we will use the Stirling compositional logic in order to prove the correctness of our
transformation rules targeting flow, link and wait activities. In this proof, we consider that the original code
may be written as follows:

P = [C1||C2]

Where
C1 = C1(j1, j2 − 1); ...C1(ji, ji+1 − 1); ...C1(jn, jn+1 − 1) and
C2 = C2(e1, e2 − 1); ...C2(ei, ei+1 − 1); ...C2(em, em+1 − 1)
Where

• C1(ji, ji+1 − 1) and C2(ei, ei+1 − 1) simple instruction or complex structure or also link or wait
activities having respectively ji+1 − ji and ei+1 − ei as number of instructions

• j0 = 0 and e0 = 0

• (R1 ∪R2, G) : {Q10 ∧Q20} P {Q1jn+1 ∧Q2em+1}
• ∀i ∈ {1, ..., n} {Q1ji} C1(ji, ji+1 − 1) {Q1ji+1}
• ∀i ∈ {1, ..., m} {Q2ei} C2(ei, ei+1 − 1) {Q2ei+1}
We consider also that the transformed code corresponds to:

1 P Recvovery ;
i f ( pos1 = j 0 ) then {

3 NB Branch= NB Branch+1;
pos1=j 1 ;

5 pos2=e 1 ; }
Trans (C1)nnTrans (C2)

7 i f ( pos1 = j n +2) then {
NB Branch= NB Branch+1;

9 pos1=j n +3; }

Where PRecovery corresponds to:

1 i f ( migrat ion ) then {
pos1 = j k ; pos2 = e h ;

3 Q1 1 = Q1j k ; Q2 1 = Q2e h ;
NB Branch=nb ;}

5 else {
pos1 = j 0 ;

7 pos2 = e 0 ;
NB Branch=1;}
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and Trans(C1) the transformation of C1 corresponds to:

Trans (C1( j 1 , j 2 −1) ) ; . . . Trans (C1( j i , j { i +1}−1) ) ; . . . Trans (C1( j n , j {n+1}−1)) ;
2 i f ( pos1 = j {n+1}) then {

NB Branch= NB Branch−1;
4 pos1=j {n+2};}

and Trans(C2) the transformation of C2 corresponds to:

Trans (C2( e 1 , e 2−1) ) ; . . . Trans (C2( e i , e { i +1}−1) ) ; . . . Trans (C2( e m , e {m+1}−1)) ;
2 i f ( pos2 = e {m+1}) then {

NB Branch= NB Branch−1;
4 pos2=e {m+2};}

Q1jk and Q2eh are the last saved post-condition before migration, jk and eh are the position of the next
instruction to be executed after migration, and nb is the number of parallel branches saved before migration.
Given these definitions, we should prove that

{Q1j1 ∧Q2e1} Trans(P ) {Q1jn+1 ∧ pos1 = jn+3 ∧Q2em+1 ∧ pos2 = jm+2 ∧NBBranch = 1}

.
In the same logic of the previous section, our proof will be made in two steps: (1) the code is executed

without any migration: migration = false, and (2) the code execution corresponds to a resumption after
migration: migration = true.

5.1 Step 1: migration = false

In this case, we have :

• {Q1j1 ∧Q2e1} PRecovery {Q1j1 ∧Q2e1 ∧ pos1 = j0 ∧ pos2 = e0 ∧NbBranch = 1}.
• {Q1j1 ∧ Q2e1 ∧ pos1 = j0 ∧ pos2 = e0} if (pos1 = j0) then { NbBranch = NbBranch + 1; pos1 =

j1; pos2 = e1;} {Q1j1 ∧Q2e1 ∧ pos1 = j1 ∧ pos2 = e1 ∧NbBranch = 2}
• {Q1jn+1∧pos1 = jn+2∧Q2em+1∧pos2 = jm+2∧NbBranch = 0} if (pos1 = jn+2) then { NbBranch =

NbBranch + 1; pos1 = jn+3;} {Q1jn+1 ∧ pos1 = jn+3 ∧Q2em+1 ∧ pos2 = jm+2 ∧NbBranch = 1}
So, we have to prove that :
{Q1j1 ∧ Q2e1 ∧ pos1 = j1 ∧ pos2 = e1 ∧ NbBranch = 2} Trans(C1)||Trans(C2) {Q1jn+1 ∧ pos1 =

jn+2 ∧Q2em+1 ∧ pos2 = jm+2 ∧NbBranch = 0}
For that, we should prove that

(R1 ∪R2, G) : {P}[{A1}Trans(C1){A2}]||[{B1}Trans(C2){B2}]{Q}

where:
P = A1 ∧B1 = Q1j1 ∧ pos1 = j1 ∧Q2e1 ∧ pos2 = e1 ∧NbBranch = 2
Q = A2 ∧B2 = Q1jn+1 ∧ pos1 = jn+2 ∧Q2em+1 ∧ pos2 = em+2 ∧NbBranch = 0
A1 = Q1j1 ∧ pos1 = j1 ∧ [(NbBranch = 2 ∧ pos2 < em+2) ∨ (NbBranch = 1 ∧ pos2 = em+2)]
A2 = Q1jn+1 ∧ pos1 = jn+2 ∧ [(NbBranch = 1 ∧ pos2 < em+2) ∨ (NbBranch = 0 ∧ pos2 = em+2)]
B1 = Q2e1 ∧ pos2 = e1 ∧ [(NbBranch = 2 ∧ pos1 < jn+2) ∨ (NbBranch = 1 ∧ pos1 = jn+2)]
B2 = Q2em+1 ∧ pos2 = em+2 ∧ [(NbBranch = 1 ∧ pos1 < jn+2) ∨ (NbBranch = 0 ∧ pos1 = jn+2)]
for that, we should prove:

1- R1 ⇒ A2

2- (R1, R2 ∪G) : {A1}Trans(C1){A2}
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3- (R2, R1 ∪G) : {B1}Trans(C2){B2}
4- R2 ⇒ B2

The first and fourth points become correct if we pose R1 = {A1, A2, I12, I13, ..., I1n} and R2 =
{B1, B2, I22, I23, ..., I2m}.

Where, I1i = Q1ji ∧ pos1 = ji ∧ [(NbBranch = 2 ∧ pos2 < em+2) ∨ (NbBranch = 1 ∧ pos2 = em+2)] and
I2i = Q2ei ∧ pos2 = ei ∧ [(NbBranch = 2 ∧ pos1 < jn+2) ∨ (NbBranch = 1 ∧ pos1 = jn+2)].

The proofs of second and third points are similar. We present next the proof of the second point:
(R1, R2 ∪G) : {A1}Trans(C1){A2}, which corresponds to:

(R1, R2 ∪G) : {A1}
Trans(C1(j1, j2 − 1)); ...T rans(C1(ji, ji+1 − 1)); ...T rans(C1(jn, jn+1 − 1));
if (pos1 = jn+1) then {NbBranch = NbBranch − 1; pos1 = jn+2; }

{A2}
For that we should prove that:

−(a)− (R1, R2∪G) : {Q1j1∧pos1 = j1∧[(NbBranch = 2∧pos2 < em+2)∨(NbBranch = 1∧pos2 = em+2)]}
Trans(C1(j1, j2 − 1)); ...T rans(C1(ji, ji+1 − 1)); ...T rans(C1(jn, jn+1 − 1));

{Q1jn+1 ∧ pos1 = jn+1 ∧ [(NbBranch = 2 ∧ pos2 < em+2) ∨ (NbBranch = 1 ∧ pos2 = em+2)]}
and

−(b)− (R1, R2∪G) : {Q1jn+1∧pos1 = jn+1∧ [(NbBranch = 2∧pos2 < em+2)∨ (NbBranch = 1∧pos2 =
em+2)]}

if (pos1 = jn+1) then {NbBranch = NbBranch − 1; pos1 = jn+2; }
{Q1jn+1 ∧ pos1 = jn+2 ∧ [(NbBranch = 1 ∧ pos2 < em+2) ∨ (NbBranch = 0 ∧ pos2 = em+2)]}

For proving (a), we should prove that:
∀i ∈ {1...n} , {Q1ji ∧ pos1 = ji ∧ [(NbBranch = 2 ∧ pos2 < em+2) ∨ (NbBranch = 1 ∧ pos2 =

em+2)]} Trans(C1(ji, ji+1 − 1)) {Q1ji+1 ∧ pos1 = ji+1 ∧ [(NbBranch = 2 ∧ pos2 < em+2) ∨ (NbBranch =
1 ∧ pos2 = em+2)]}

As we know, C1 may be simple, conditional, or loop structure. For these structures, this proof is already
made in the previous section. However, considering parallel programs, we should prove also that:

∀i ∈ {1...n} , R1 ⇒ {Q1ji∧pos1 = ji∧ [(NbBranch = 2∧pos2 < em+2)∨(NbBranch = 1∧pos2 = em+2)]}
Which is true considering the definition of R1. So, (a) is correct.
For proving (b), we should prove that:

• R1 ⇒ {Q1jn+1 ∧ pos1 = jn+1 ∧ [(NbBranch = 2 ∧ pos2 < em+2) ∨ (NbBranch = 1 ∧ pos2 = em+2)]}
(Which is true considering the definition of R1).

• (R1, R2∪G) : (R1, {Q1jn+1 ∧ pos1 = jn+1 ∧ [(NbBranch = 2∧ pos2 < em+2)∨ (NbBranch = 1∧ pos2 =
em+2)]∧ pos1 = jn+1} NbBranch = NbBranch− 1; pos1 = jn+2; {Q1jn+1 ∧ pos1 = jn+2 ∧ [(NbBranch =
1 ∧ pos2 < em+2) ∨ (NbBranch = 0 ∧ pos2 = em+2)]} (Which is also true).

Thereby, we proved the following result.

Result 13 :

For any parallel program P = C1||C2 composed of instructions belonging to S, nested conditional
structures, and nested loops

{Q1j1 ∧Q2e1 ∧ ¬migration} Trans(P ) {Q1jn+1 ∧ pos1 = jn+3 ∧Q2em+1 ∧ pos2 = jm+2 ∧NbBranch = 1}
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5.2 Step 2: migration = true

In this case, we have:
{Q1j1 ∧Q2e1} PRecovery {Q1jm1 ∧Q2em2 ∧ pos1 = jm1 ∧ pos2 = em2 ∧NbBranch = m3}.
Where Q1jm1 the last captured state of branch C1 and m1 its position, Q2em2 the last captured state

of branch C2 and m2 its position, and m3 the number of parallel branches at these states.
We can distinguish five possible states:

1- m1 = j0 ∧m2 = e0 ∧m3 = 1 (equivalent to the case of migration = false)

2- j0 < m1 ≤ jn+1 ∧ e0 < m2 ≤ jm+1 ∧m3 = 2

3- m1 = jn+2 ∧ e0 < m2 ≤ jm+1 ∧m3 = 1

4- j0 < m1 ≤ jn+1 ∧m2 = jm+2 ∧m3 = 1

5- m1 = jn+2 ∧m2 = jm+2 ∧m3 = 0

For each state, we should prove that the post condition of the transformed program corresponds to :
{Q1jn+1 ∧ pos1 = jn+3 ∧Q2em+1 ∧ pos2 = jm+2 ∧NbBranch = 1}

We begin by proving the second item. In such a case, we have:
{Q1jm1 ∧ Q2em2 ∧ pos1 = jm1 ∧ pos2 = em2 ∧ NbBranch = 2} if (pos1 = j0) then { NbBranch =

NbBranch + 1; pos1 = j1; pos2 = e1;} {Q1jm1 ∧Q2em2 ∧ pos1 = jm1 ∧ pos2 = em2 ∧NbBranch = 2} (since
pos1 > j0).

and
{Q1jn+1 ∧ pos1 = jn+2 ∧Q2em+1 ∧ pos2 = jm+2 ∧NbBranch = 0} if (pos1 = jn+2) then { NbBranch =

NbBranch + 1; pos1 = jn+3;} {Q1jn+1 ∧ pos1 = jn+3 ∧Q2em+1 ∧ pos2 = jm+2 ∧NbBranch = 1}
So, we should prove that:
We should prove that

(R1 ∪R2, G) : {P}[{A1}Trans(C1){A2}]||[{B1}Trans(C2){B2}]{Q}

where:
P = A1 ∧B1 = Q1jm1 ∧Q2em2 ∧ pos1 = jm1 ∧ pos2 = em2 ∧NbBranch = 2
Q = A2 ∧B2 = Q1jn+1 ∧ pos1 = jn+2 ∧Q2em+1 ∧ pos2 = jm+2 ∧NbBranch = 0
A1 = Q1jm1 ∧ pos1 = jm1 ∧ [(NbBranch = 2 ∧ pos2 < em+2) ∨ (NbBranch = 1 ∧ pos2 = em+2)]
A2 = Q1jn+1 ∧ pos1 = jn+2 ∧ [(NbBranch = 1 ∧ pos2 < em+2) ∨ (NbBranch = 0 ∧ pos2 = em+2)]
B1 = Q2em2 ∧ pos2 = em2 ∧ [(NbBranch = 2 ∧ pos1 < jn+2) ∨ (NbBranch = 1 ∧ pos1 = jn+2)]
B2 = Q2em+1 ∧ pos2 = em+2 ∧ [(NbBranch = 1 ∧ pos1 < jn+2) ∨ (NbBranch = 0 ∧ pos1 = jn+2)]
For that, we should prove the following points:

• R1 ⇒ A2 (true)

• (R1, R2 ∪G) : {A1}Trans(C1){A2}
• (R2, R1 ∪G) : {B1}Trans(C2){B2}
• R2 ⇒ B2 (true)

The proof of the second and the third points are the same. We will present the proof of the second point.
which corresponds to:

(R1, R2 ∪G) : {A1}
Trans(C1(j1, j2 − 1)); ...T rans(C1(ji, ji+1 − 1)); ...T rans(C1(jn, jn+1 − 1));
if (pos1 = jn+1) then {NbBranch = NbBranch − 1; pos1 = jn+2; }
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{A2}
For that we should prove that:

−(a)− (R1, R2∪G) : {Q1jm1∧ pos1 = jm1 ∧ [(NbBranch = 2∧ pos2 < em+2)∨ (NbBranch = 1∧ pos2 =
em+2)]}

Trans(C1(j1, j2 − 1)); ...T rans(C1(ji, ji+1 − 1)); ...T rans(C1(jn, jn+1 − 1));
{Q1jn+1 ∧ pos1 = jn+1 ∧ [(NbBranch = 2wedgepos2 < em+2) ∨ (NbBranch = 1 ∧ os2 = em+2)]}

and

−(b)− (R1, R2∪G) : {Q1jn+1∧pos1 = jn+1∧ [(NbBranch = 2∧pos2 < em+2)∨ (NbBranch = 1∧pos2 =
em+2)]}

if (pos1 = jn+1) then {NbBranch = NbBranch − 1; pos1 = jn+2; }
{Q1jn+1 ∧ pos1 = jn+2 ∧ [(NbBranch = 1 ∧ pos2 < em+2) ∨ (NbBranch = 0 ∧ pos2 = em+2)]}

We already proved (b) in the previous section.

For proving (a), we should prove that:

• ∀i < m1 , {Q1jm1 ∧ pos1 = jm1 ∧ [(NbBranch = 2 ∧ pos2 < em+2) ∨ (NbBranch = 1 ∧ pos2 =
em+2)]} Trans(C1(ji, ji+1− 1)) {Q1jm1 ∧ pos1 = jm1 ∧ [(NbBranch = 2∧ pos2 < em+2)∨ (NbBranch =
1 ∧ pos2 = em+2)]}

• ∀i ≥ m1 , {Q1ji ∧ pos1 = ji ∧ [(NbBranch = 2 ∧ pos2 < em+2) ∨ (NbBranch = 1 ∧ pos2 =
em+2)]} Trans(C1(ji, ji+1−1)) {Q1ji+1∧pos1 = ji+1∧ [(NbBranch = 2∧pos2 < em+2)∨ (NbBranch =
1 ∧ pos2 = em+2)]}

As we know, C1 may be simple, conditional, or loop structure. For these structures, this proof is already
made in the previous section for the case of sequential programs. However, considering parallel programs,
we should prove also that:

∀i ∈ {1...n} , R1 ⇒ {Q1ji∧pos1 = ji∧ [(NbBranch = 2∧pos2 < em+2)∨(NbBranch = 1∧pos2 = em+2)]}
Which is true considering the definition of R1. So, (a) is correct.
The proof of the fourth item is similar to the third item and will not be presented. Now, we present the

proof of the third item corresponding to m1 = jn+2 ∧ e0 < m2 ≤ jm+1 ∧m3 = 1.
In such a case, we have:
{Q1jn+1 ∧ Q2em2 ∧ pos1 = jn+2 ∧ pos2 = em2 ∧ NbBranch = 1} if (pos1 = j0) then { NbBranch =

NbBranch +1; pos1 = j1; pos2 = e1;} {Q1jn+1 ∧Q2em2∧ pos1 = jn+2 ∧ pos2 = em2∧NbBranch = 1} (since
pos1 > j0).

and
{Q1jn+1 ∧ pos1 = jn+2 ∧Q2em+1 ∧ pos2 = jm+2 ∧NbBranch = 0} if (pos1 = jn+2) then { NbBranch =

NbBranch + 1; pos1 = jn+3;} {Q1jn+1 ∧ pos1 = jn+3 ∧Q2em+1 ∧ pos2 = jm+2 ∧NbBranch = 1}
So, we should prove that:
We should prove that

(R1 ∪R2, G) : {P}[{A1}Trans(C1){A2}]||[{B1}Trans(C2){B2}]{Q}
where:
P = A1 ∧B1 = Q1jn+1 ∧Q2em2 ∧ pos1 = jn+2 ∧ pos2 = em2 ∧NbBranch = 1
Q = A2 ∧B2 = Q1jn+1 ∧ pos1 = jn+2 ∧Q2em+1 ∧ pos2 = jm+2 ∧NbBranch = 0
A1 = Q1jn+1 ∧ pos1 = jn+2 ∧ [(NbBranch = 1 ∧ pos2 < em+2) ∨ (NbBranch = 0 ∧ pos2 = em+2)]
A2 = Q1jn+1 ∧ pos1 = jn+2 ∧ [(NbBranch = 1 ∧ pos2 < em+2) ∨ (NbBranch = 1 ∧ pos2 = em+2)]
B1 = Q2em2 ∧ pos2 = em2 ∧ [(NbBranch = 2 ∧ pos1 < jn+2) ∨ (NbBranch = 1 ∧ pos1 = jn+2)]
B2 = Q2em+1 ∧ pos2 = em+2 ∧ [(NbBranch = 1 ∧ pos1 < jn+2) ∨ (NbBranch = 0 ∧ pos1 = jn+2)]
For that, we should prove the following points:
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• R1 ⇒ A2 (true)

• (R1, R2 ∪G) : {A1}Trans(C1){A2}
• (R2, R1 ∪G) : {B1}Trans(C2){B2}
• R2 ⇒ B2 (true)

The proof of the third point is similar to the proof made for the previous case when j0 < m1 ≤ jn+1.
Next, we will present the proof of the second point for which m1 = jn+2.

So, we have to prove that:

(R1, R2 ∪G) : {A1}
Trans(C1(j1, j2 − 1)); ...T rans(C1(ji, ji+1 − 1)); ...T rans(C1(jn, jn+1 − 1));
if (pos1 = jn+1) then {NbBranch = NbBranch − 1; pos1 = jn+2; }

{A2}

For that we should prove that:

−(a)− (R1, R2∪G) : {Q1jn+1∧pos1 = jn+2∧ [(NbBranch = 1∧pos2 < em+2)∨ (NbBranch = 0∧pos2 =
em+2)]}

Trans(C1(j1, j2 − 1)); ...T rans(C1(ji, ji+1 − 1)); ...T rans(C1(jn, jn+1 − 1));
{Q1jn+1 ∧ pos1 = jn+2 ∧ [(NbBranch = 1wedgepos2 < em+2) ∨ (NbBranch = 0 ∧ os2 = em+2)]}

and

−(b)− (R1, R2∪G) : {Q1jn+1∧pos1 = jn+2∧ [(NbBranch = 1∧pos2 < em+2)∨ (NbBranch = 0∧pos2 =
em+2)]}

if (pos1 = jn+1) then {NbBranch = NbBranch − 1; pos1 = jn+2; }
{Q1jn+1 ∧ pos1 = jn+2 ∧ [(NbBranch = 1 ∧ pos2 < em+2) ∨ (NbBranch = 0 ∧ pos2 = em+2)]}

We already proved (a) and (b) in the previous section.
Now, we will present the proof of the fifth case which corresponds to m1 = jn+2 ∧m2 = jm+2 ∧m3 = 0.

In such a case:
{Q1jn+1 ∧ Q2em+1 ∧ pos1 = jn+2 ∧ pos2 = em+2 ∧ NbBranch = 0} if (pos1 = j0) then { NbBranch =

NbBranch + 1; pos1 = j1; pos2 = e1;} {Q1jn+1 ∧ Q2em+1 ∧ pos1 = jn+2 ∧ pos2 = em+2 ∧ NbBranch = 0}
(since pos1 > j0).

and
{Q1jn+1 ∧ pos1 = jn+2 ∧Q2em+1 ∧ pos2 = jm+2 ∧NbBranch = 0} if (pos1 = jn+2) then { NbBranch =

NbBranch + 1; pos1 = jn+3;} {Q1jn+1 ∧ pos1 = jn+3 ∧Q2em+1 ∧ pos2 = jm+2 ∧NbBranch = 1}
So, we should prove that:
We should prove that

(R1 ∪R2, G) : {P}[{A1}Trans(C1){A2}]||[{B1}Trans(C2){B2}]{Q}

where:
P = A1 ∧B1 = Q1jn+1 ∧Q2em+1 ∧ pos1 = jn+2 ∧ pos2 = em+2 ∧NbBranch = 0
Q = A2 ∧B2 = Q1jn+1 ∧ pos1 = jn+2 ∧Q2em+1 ∧ pos2 = jm+2 ∧NbBranch = 0
A1 = Q1jn+1 ∧ pos1 = jn+2 ∧NbBranch = 0
A2 = Q1jn+1 ∧ pos1 = jn+2 ∧NbBranch = 0
B1 = Q2em+1 ∧ pos2 = em+2 ∧NbBranch = 0
B2 = Q2em+1 ∧ pos2 = em+2 ∧NbBranch = 0
For that, we should prove the following points:
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• R1 ⇒ A2 (true)

• (R1, R2 ∪G) : {A1}Trans(C1){A2}
• (R2, R1 ∪G) : {B1}Trans(C2){B2}
• R2 ⇒ B2 (true)

The proof of the second and third points are similar. Next, we will present the proof of the second point.
So, we have to prove that:

(R1, R2 ∪G) : {A1}
Trans(C1(j1, j2 − 1)); ...T rans(C1(ji, ji+1 − 1)); ...T rans(C1(jn, jn+1 − 1));
if (pos1 = jn+1) then {NbBranch = NbBranch − 1; pos1 = jn+2; }

{A2}

For that we should prove that:

−(a)− (R1, R2 ∪G) : {Q1jn+1 ∧ pos1 = jn+2 ∧NbBranch = 0}
Trans(C1(j1, j2 − 1)); ...T rans(C1(ji, ji+1 − 1)); ...T rans(C1(jn, jn+1 − 1));

{Q1jn+1 ∧ pos1 = jn+2 ∧NbBranch = 0}

and

−(b)− (R1, R2 ∪G) : {Q1jn+1 ∧ pos1 = jn+2 ∧NbBranch = 0}
if (pos1 = jn+1) then {NbBranch = NbBranch − 1; pos1 = jn+2; }

{Q1jn+1 ∧ pos1 = jn+2 ∧NbBranch = 0}
(a) is correct according to result 11 and since we have R1 ⇒ {Q1jn+1 ∧ pos1 = jn+2 ∧NbBranch = 0}.
(b) is also correct since the condition is not satisfied.
Thereby, we proved the following result.

Result 14 :

For any parallel program P = C1||C2 composed of instructions belonging to S, nested conditional
structures, and nested loops

{Q1j1 ∧Q2e1 ∧migration} Trans(P ) {Q1jn+1 ∧ pos1 = jn+3 ∧Q2em+1 ∧ pos2 = jm+2 ∧NbBranch = 1}

Based on results 13 and 14, we can deduce the following result:

Result 15 :

For any parallel program P = C1||C2 composed of instructions belonging to S, nested conditional
structures, and nested loops

{Q1j1 ∧Q2e1} Trans(P ) {Q1jn+1 ∧ pos1 = jn+3 ∧Q2em+1 ∧ pos2 = jm+2 ∧NbBranch = 1}
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6 Conclusion

In this report, we presented the technical details of our strong mobility approach. We focus on the solution
architecture as well as the employed transformation rules. In addition, we presented the proof of correctness
of our transformation rules. In fact, we proved that the resulting code is semantically equivalent to the
original one.
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